Skip to main content
Log in

A modified model for concurrent topology optimization of structures and materials

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper presents a study on the concurrent topology optimization of a structure and its material microstructure. A modified optimization model is proposed by introducing microstructure orientation angles as a new type of design variable. The new model is based on the assumptions that a structure is made of a material with the same microstructure, and the material may have a different orientation within the design domain of the structure. The homogenization theory is applied to link the material and structure scales. An additional post-processing technique is developed for modifying the obtained design to avoid local optima caused by the use of orientation angle variables. Numerical examples are presented to illustrate the viability and effectiveness of the proposed model. It is found that significant improvement in structural performance can be achieved by optimizing the orientation of microstructures in concurrent topology optimization of structures and materials.

Graphical Abstract

This paper presents a modified concurrent optimization model with three kinds of design variables. At the micro scale, topological design variables are employed for describing the distribution of base material within a material cell so that the material microstructure can be defined. At the macro scale, in addition to topological design variables for describing the distribution of material with microstructure within the design domain, microstructure orientation angles are introduced for defining material axis directions at different locations. Numerical examples have shown that significant improvement in the performance of optimized designs can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheng, K.T., Olhoff, N.: An investigation concerning optimal design of solid elastic plates. Int. J. Solids Struct. 17, 305–323 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  Google Scholar 

  3. Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989)

    Article  Google Scholar 

  4. Rozvany, G.I.N., Zhou, M., Birker, T.: Generalized shape optimization without homogenization. Struct. Optim. 4, 250–252 (1992)

    Article  Google Scholar 

  5. Guest, J.K., Prévost, J.H., Belytschko, T.: Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Methods Eng. 61, 238–254 (2004)

    Article  MATH  Google Scholar 

  6. Kang, Z., Wang, Y.: A nodal variable method of structural topology optimization based on Shepard interpolant. Int. J. Numer. Methods. Eng. 90, 329–342 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Luo, Z., Zhang, N., Wang, Y., et al.: Topology optimization of structures using meshless density variable approximants. Int. J. Numer. Methods Eng. 93, 443–464 (2013)

    Article  MathSciNet  Google Scholar 

  8. Wang, M.Y., Wang, X.M., Guo, D.M.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003)

    Article  MATH  Google Scholar 

  9. Allaire, G., Jouve, F., Toader, A.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194, 363–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, X., Zhang, W.S., Zhong, W.L.: Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J. Appl. Mech-T. ASME. 81, 081009-1–081009-12 (2014)

    Article  Google Scholar 

  11. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structures and Properties, 2nd edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  12. Ashby, M.F., Evans, A.G., Fleck, N.A., et al.: Metal Foams: A Design Guide. Butterworth Heineman, Boston (2000)

    Google Scholar 

  13. Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49, 1747–1769 (2001)

    Article  MATH  Google Scholar 

  14. Wallach, J.C., Gibson, L.J.: Mechanical behavior of a three-dimensional truss material. Int. J. Solids Struct. 38, 7181–7196 (2001)

    Article  MATH  Google Scholar 

  15. Hayes, A.M., Wang, A., Dempsey, B.M., et al.: Mechanics of linear cellular alloys. Mech. Mater. 36, 691–713 (2004)

    Article  Google Scholar 

  16. Wang, A.J., Mcdowell, D.L.: In-plane stiffness and yield strength of periodic metal honeycombs. Transactions of the ASME. J. Eng. Mater. Technol. 126, 137–156 (2004)

    Article  Google Scholar 

  17. Colombo, P.: Conventional and novel processing methods for cellular ceramics. Phil. Trans. R. Soc. A 364, 109–124 (2006)

    Article  Google Scholar 

  18. Yang, J.L., Yu, J.L., Huang, Y.: Recent developments in gelcasting of ceramics. J. Eur. Ceram. Soc. 31, 2569–2591 (2011)

    Article  Google Scholar 

  19. Studart, A.R., Gonzenbach, U.T., Tervoort, E., et al.: Processing routes to macroporous ceramics: a review. J. Am. Ceram. Soc. 89, 1771–1789 (2006)

    Article  Google Scholar 

  20. Sigmund, O.: Design of material structures using topology optimization. PhD. Thesis, Technical University of Denmark (1994)

  21. Sigmund, O.: Materials with prescribed constitutive parameters: an inverse homogenization problem. Int. J. Solids Struct. 31, 2313–2329 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sigmund, O., Torquato, S.: Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 45, 1037–1067 (1997)

  23. Guest, J.K., Prévost, J.H.: Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int. J. Solids Struct. 43, 7028–7047 (2006)

    Article  MATH  Google Scholar 

  24. Guest, J.K., Prévost, J.H.: Design of maximum permeability material structures. Comput. Methods Appl. Mech. Eng. 196, 1006–1017 (2007)

    Article  MATH  Google Scholar 

  25. de Kruijf, N., Zhou, S., Li, Q., et al.: Topological design of structures and composite materials with multiobjectives. Int. J. Solids Struct. 44, 7092–7109 (2007)

    Article  MATH  Google Scholar 

  26. Wang, Y., Luo, Z., Zhang, N., et al.: Topological shape optimization of microstructural metamaterials using a level set method. Comput. Mater. Sci. 87, 178–186 (2014)

    Article  Google Scholar 

  27. Guo, X., Cheng, G.D.: Recent development in structural design and optimization. Acta Mech. Sin. 26, 807–823 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rodrigues, H., Guedes, J.M., Bendsoe, M.P.: Hierarchical optimization of material and structure. Struct. Multidisc Optim. 24, 1–10 (2002)

    Article  Google Scholar 

  29. Coelho, P.G., Fernandes, P.R., Guedes, J.M., et al.: A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct. Multidisc Optim. 35, 107–115 (2008)

    Article  Google Scholar 

  30. Liu, L., Yan, J., Cheng, G.D.: Optimum structure with homogeneous optimum truss-like material. Comput. Struct. 86, 1417–1425 (2008)

    Article  Google Scholar 

  31. Niu, B., Yan, J., Cheng, G.D.: Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct. Multidisc Optim. 39, 115–132 (2009)

    Article  Google Scholar 

  32. Deng, J.D., Yan, J., Cheng, G.D.: Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct. Multidisc Optim. 47, 583–597 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang, R.Z., Du, J.B.: Microstructural topology optimization with respect to sound power radiation. Struct. Multidisc Optim. 47, 191–206 (2013)

    Article  MATH  Google Scholar 

  34. Guo, X., Zhao, X.F., Zhang, W.S., et al.: Multi-scale robust design and optimization considering load uncertainties. Comput. Methods Appl. Mech. Eng. 283, 994–1009 (2015)

  35. Ma, Z.D., Kikuchi, N., Cheng, H.: Topological design for vibrating structures. Comput. Methods Appl. Mech. Eng. 121, 259–280 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. AMS Chelsea Publishing, Amsterdam (1978)

    MATH  Google Scholar 

  37. Hassani, B., Hinton, E.: A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Comput. Struct. 69, 707–717 (1998)

    Article  MATH  Google Scholar 

  38. Liu, S.T., Cheng, G.D., Gu, Y., et al.: Mapping method for sensitivity analysis of composite material property. Struct. Multidisc Optim. 24, 212–217 (2002)

  39. Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16, 68–75 (1998)

    Article  Google Scholar 

  40. Bourdin, B.: Filters in topology optimization. Int. J. Numer. Methods Eng. 50, 2143–2158 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multidisc Optim. 33, 401–424 (2007)

    Article  Google Scholar 

  42. Svanberg, K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, China (Grant GZ1305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Ma, H. A modified model for concurrent topology optimization of structures and materials. Acta Mech. Sin. 31, 890–898 (2015). https://doi.org/10.1007/s10409-015-0502-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0502-x

Keywords

Navigation