Skip to main content
Log in

Theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

One of the major problems in structural fatigue life analysis is establishing structural load spectra under actual operating conditions. This study conducts theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains. The quasistatic load series that corresponds to quasi-static deformation modes are identified according to the structural form and bearing conditions of high-speed train bogie frames. Moreover, a force-measuring frame is designed and manufactured based on the quasi-static load series. The load decoupling model of the quasi-static load series is then established via calibration tests. Quasi-static load-time histories, together with online tests and decoupling analysis, are obtained for the intermediate range of the Beijing—Shanghai dedicated passenger line. The damage consistency calibration of the quasi-static discrete load spectra is performed according to a damage consistency criterion and a genetic algorithm. The calibrated damage that corresponds with the quasi-static discrete load spectra satisfies the safety requirements of bogie frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gassner, E.: Festigkeitsversuche mit wiederholter Beanspruchung im Flugzeugbau (Strength tests under repeated loading for aeronotical engineering). Luftwissen 6, 61–64 (1939)

    Google Scholar 

  2. Schütz, D., Gerharz, J.J.: ENSTAFF—A standard test sequence for composite components combining load and environment. In: Simpson DL, editor. New materials and fatigue resistant aircraft design. 14th International Conference on Aeronautical Fatigue (ICAF), Ottawa, Ont, 425–444 (1987)

    Google Scholar 

  3. Schütz, W.: Standardized stress-time histories—An overview, development of fatigue loading spectra. ASTMSTP 1006, Potter J.M. and Watanable, R.T., American Society for Testing and Materials, Philadelphia, 3–16 (1989)

  4. Ten Have, A.A.: European approaches in standard spectrum development of fatigue loading spectra, ASTM STP 1006, Potter J.M., and Watanable, R.T., American Society for Testing and Materials, Philadelphia, 17–35 (1989)

  5. Breitkopf, G.E.: Basic approach in the development of TURBISTAN, a loading standard for fighter aircraft engine disks. Development of Fatigue Loading Spectra, ASTM STP 1006, Potter J. M. and Watanable, R. T., American Society for Testing and Materials, Philadelphia, 65–78 (1989)

  6. Schijve, J.: Fatigue of structures and materials in the 20th century and the state of the art. International Journal of Fatigue 25, 679–702 (2003)

    Article  MATH  Google Scholar 

  7. Heuler, P., Klätschke, H.: Generation and use of standardized load spectra and load-time histories. International Journal of Fatigue 27, 974–990 (2005)

    Article  MATH  Google Scholar 

  8. Sonsino, C.M.: Fatigue testing under variable amplitude loading. International Journal of Fatigue 29, 1080–1089 (2007)

    Article  MATH  Google Scholar 

  9. Xiong, J.J., Shenoi, R.A.: A load history generation approach for full-scale accelerated fatigue tests. Engineering Fracture Mechanics 75, 3226–3243 (2008)

    Article  Google Scholar 

  10. Tucker, L.E.E., Bussa, S.: The SAE cumulative fatigue damage test program. In: Wetzel RM, ed. Fatigue under Complex Loading-analyses and Experiments. SAE AE-6, 1–54 (1977)

    Google Scholar 

  11. Fash, J.W., Conle, F.A., Minter, G.L.: Analysis of irregular loading histories for the SAE biaxial fatigue program. In: Leese GL, Socie D, eds. Multiaxial Fatigue: Analyses and Experiments. SAE AE-14, 33–59 (1989)

    Google Scholar 

  12. Berger, C., Eulitz, K.G., Heuler, P., et al.: Betriebsfestigkeit in Germany—An overview. International Journal of Fatigue 24, 603–625 (2004)

    Article  Google Scholar 

  13. Oelmanm, B.: Determination of load spectra for durability approval of car drive lines. Fatigue & Fracture of Engineering Materials & Structures 25, 1121–1125 (2002)

    Article  Google Scholar 

  14. Sonsino, C.M., Klätschke, H., Schütz, W., et al.: Standardised load sequence for offshore structures-wave action standard history—WASH I. Fraunhofer-Institut für Betriebsfestigkeit (LBF), Industrieanlagen-Betriebsgesellschaft mbH (IABG). LBF-Report No. FB-181 (1988) IABG-Report No. TF-2347 (1988)

    Google Scholar 

  15. Schütz, W., Klätschke, H., Hück, M., et al.: Standardised load sequence for offshore structures—WASH I. Fracture of Engineering Materials & Structures 13, 15–29 (1990)

    Article  Google Scholar 

  16. Li, S.S., Cui, W.C.: On generation of standardized load-time histories and standardized load spectra. Journal of Ship Mechanics 15, 1405–1415 (1011)

  17. Brune, M., Zenner, H.: Verbesserung der Lebensdauerabsch ätzung für Bauteile in Walzwerksantrieben (Improvement of life prediction for components of steel mill drives). VBFEh Düsseldorf, Germany, Report ABF40.1 (1990)

    Google Scholar 

  18. Ten Have, A.A.: WISPER and WISPERX-final definition of two standardized fatigue loading sequences for wind turbine blades. NLR Report CR 91476 L, Amsterdam (1991)

    Google Scholar 

  19. Epaarachchi, J.A., Clausen P.D.: The development of a fatigue loading spectrum for small wind turbine blades. Journal of Wind Engineering and Industrial Aerodynamics 94, 207–223 (2006)

    Article  Google Scholar 

  20. Schupp G., Jaschinski, A.: Virtual prototypeing: the future way of designing railway vehicles. International Journal of Vehicle Design 22, 93–115 (1999)

    Article  Google Scholar 

  21. Andersson, C., Abrahamsson, T.: Simulation of interaction between a train in general motion and a track. Vehicle System Dynamics 38, 433–455 (2002)

    Article  Google Scholar 

  22. Ma, W.H., Luo, S.H.: Song, R.R.: Load spectrum research of tumbler journal box node of high-speed motor car. Railway Locomotive & Car 29, 12–14, 50 (2009)

    Google Scholar 

  23. Ren, Z.S., Sun, S.G., Li, Q.: Axle spring load test and dynamic characteristics analysis of high speed EMU. Journal of Mechanical Engineering 46, 109–115 (2010)

    Article  Google Scholar 

  24. Zhang, S.G.: Study on testing and establishment method for the load spectrum of bogie frame for high-speed trains. Science China Series E: Technological Sciences 51, 2142–2151 (2008)

    Article  Google Scholar 

  25. The static strength and fatigue strength calculate report for motor car bogie frame for CRH3 EMU. Beijing Jiaotong University, Beijing (2009)

  26. Railway applications—Methods of specifying structural requirements of bogie frames. British Standard BS EN 13749, United Kingdom (2005)

  27. Motive power units-Bogies and running gear-Bogie frame structure strength tests. International Union of Railways UIC Code615-4 (1994)

  28. Test methods of static load for truck frames and truck bolsters of railway rolling stock. Japanese Industrial Standard (JIS) E 4208(1988)

  29. Yan, J.M.: Vehicle Engineering, (2nd edn.) China Railway Publishing House, Beijing (2004)

    Google Scholar 

  30. Liu, Z.M.: Research on fatigue life and reliability of welding frame under random loads, [Ph.D. Thesis]. Beijing Jiaotong University, Beijing (2001)

    Google Scholar 

  31. Glinka, G., Kam, J.C.P.: Rainflow counting algorithm for very long stress histories. International Journal of Fatigue 9, 223–228 (1987)

    Article  Google Scholar 

  32. Schijve. J.: Fatigue of Structures and Materials, (2nd edn.) Springer Science+Business Media, B. V., Berlin. 259–292 (2009)

    Book  Google Scholar 

  33. Miner, M.A.: Cumulative damage in fatigue. Journal of Applied Mechanics-Transactions of the ASME 12, 159–164 (1945)

    Google Scholar 

  34. Fatigue design and assessment of steel structures. British Standand BS 7608 (1993)

  35. Kassner, M.: Fatigue strength analysis of a welded railway vehicle structure by different methods. International Journal of Fatigue 34, 103–111 (2012)

    Article  Google Scholar 

  36. David, E., Goldberg.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Boston (1989)

    Google Scholar 

  37. User’s Guide: Genetic altorithm and direct search toolbox for use with MATLAB. The MathWorks (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhu.

Additional information

The project was supported by the National Natural Science Foundation of China (U1134201), and partly supported by the National High Technology Research and Development Program of China (0912JJ0104-DL00-H-HZ-001-20100105).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, N., Sun, SG., Li, Q. et al. Theoretical research and experimental validation of quasi-static load spectra on bogie frame structures of high-speed trains. Acta Mech Sin 30, 901–909 (2014). https://doi.org/10.1007/s10409-014-0117-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-014-0117-7

Keywords

Navigation