Skip to main content
Log in

Dynamical analysis and performance evaluation of a biped robot under multi-source random disturbances

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

During bipedal walking, it is critical to detect and adjust the robot postures by feedback control to maintain its normal state amidst multi-source random disturbances arising from some unavoidable uncertain factors. The radical basis function (RBF) neural network model of a five-link biped robot is established, and two certain disturbances and a randomly uncertain disturbance are then mixed with the optimal torques in the network model to study the performance of the biped robot by several evaluation indices and a specific Poincaré map. In contrast with the simulations, the response varies as desired under optimal inputting while the output is fluctuating in the situation of disturbance driving. Simulation results from noise inputting also show that the dynamics of the robot is less sensitive to the disturbance of knee joint input of the swing leg than those of the other three joints, the response errors of the biped will be increasing with higher disturbance levels, and especially there are larger output fluctuations in the knee and hip joints of the swing leg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ie :

The relative angle number of robot configuration just as expressed in Fig. 1

je :

The sample number for the Monte Carlo experiment of a combination, e.g., je = 1, 2, ⋯, 32

ne :

The maximum value of variable je

ke :

The ke-th walking step in an experiment, e.g., ke = 1, 2, ⋯, 6 in thiswork

me :

The maximum value of variable ke

ce :

The number of disturbance combination, e.g., ce = 1, 2, ⋯, 24 in this study

se :

The maximum value of variable ce

ae :

Actual value of the marked variable in the experiment

References

  1. Shieh, M.Y., Chen, C.S., Chuang, C.H., et al.: Gait detection based stable locomotion control system for biped robots. Computers & Mathematics with Applications 64, 1431–1440 (2012)

    Article  Google Scholar 

  2. Aoi, S., Tsuchiya, K.: Locomotion control of a biped robot using nonlinear oscillators. Autonomous Robots 19, 219–232 (2005)

    Article  Google Scholar 

  3. Hays, J., Sandu, A., Sandu, C., et al.: Motion planning of uncertain ordinary differential equation systems. Computer Science Technical Report TR-11-04. 1–26 (2011)

    Google Scholar 

  4. Se, S., Lowe, D., Little, J.: Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks. The International Journal of Robotics Research 21, 735–758 (2002)

    Article  Google Scholar 

  5. Scheidt, R.A., Dingwell, J.B., Mussa-Ivaldi, F.A.: Learning to move amid uncertainty. Journal of Neurophysiology 86, 971–985 (2001)

    Google Scholar 

  6. Ding, C.T., Yang, S.X., Gan, C.B.: Input torque sensitivity to uncertain parameters in biped robot. Acta Mechanica Sinica 29, 452–461 (2013)

    Article  MathSciNet  Google Scholar 

  7. Jung, S., Hsia, T.C.: Robust neural force control scheme under uncertainties in robot dynamics and unknown environment. IEEE Transactions on Industrial Electronics 47, 403–412 (2000)

    Article  Google Scholar 

  8. Rout, B.K., Mittal, R.K.: Tolerance design of manipulator parameters using design of experiment approach. Structural Multidisciplinary Optimization 34, 445–462 (2007)

    Article  Google Scholar 

  9. Rout, B.K., Mittal, R.K.: Optimal design of manipulator parameter using evolutionary optimization techniques. Robotica 28, 381–395 (2010)

    Article  Google Scholar 

  10. Rout, B.K., Mittal, R.K.: Parametric design optimization of 2-DOF RR planar manipulator-a design of experiment approach. Robotics and Computer-Integrated Manufacturing. 24, 239–248 (2008)

    Article  Google Scholar 

  11. Park, B.S., Yoo, S.J., Park, J.B., et al.: Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Transactions on Control Systems Technology 17, 207–214 (2009)

    Article  Google Scholar 

  12. Stone, P., Sridharan, M., Stronger, D., et al.: From pixels to multi-robot decision-making: A study in uncertainty. Robotics and Autonomous Systems 54, 933–943 (2006)

    Article  Google Scholar 

  13. Zhang, Y., Gong, D.W., Zhang, J.H.: Robot path planning in uncertain environment using multi-objective particle swarm optimization. Neurocomputing 103, 172–185 (2013)

    Article  Google Scholar 

  14. Jung, B.C., Black, J.T., Chen, D.W.H., et al.: Taguchi-based methodology for determining/optimizing robot process capability. IIE Transactions 23, 169–184 (1991)

    Article  Google Scholar 

  15. Akkizidis, I.S., Roberts, G.N., Ridao, P., et al.: Designing a fuzzy-like PD controller for an underwater robot. Control Engineering Practice 11, 471–480 (2003)

    Article  Google Scholar 

  16. Rout, B.K., Mittal, R.K.: Tolerance design of robot parameters using Taguchi method. Mechanical System and Signal Processing 20, 1832–1852 (2006)

    Article  Google Scholar 

  17. Huang, X.Z., Zhang, Y.M.: Robust tolerance design for function generation mechanisms with joint clearances. Mechanism and Machine Theory 45, 1286–1297 (2010)

    Article  MATH  Google Scholar 

  18. Kalani, H., Akbarzadeh, A.: Parameter optimization of a snake robot using Taguchi method. Applied Mechanics and Materials 110, 4220–4226 (2011)

    Article  Google Scholar 

  19. Rout, B.K., Mittal, R.K.: Optimal manipulator parameter tolerance selection using evolutionary optimization technique. Engineering Applications of Artificial Intelligence 21, 509–524 (2008)

    Article  Google Scholar 

  20. Suzuki, S., Furuta, K., Pan, Y., et al.: Biped walking robot control with passive walker model by new VSC servo. Proceedings of the American Control Conference 1, 107–112 (2001)

    Article  Google Scholar 

  21. Westervelt, E.R., Grizzle, J.W., Chevallereau, C., et al.: Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  22. Chevallereau, C., Westervelt, E. R., Grizzle, J.W.: Asymptotically stable running for a five-link, four-actuator, planar bipedal robot. The International Journal of Robotics Research 24, 431–464 (2005)

    Article  Google Scholar 

  23. Grizzle, J.W., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Transactions on Automatic Control 46, 51–64 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wang, T., Chevallereau, C.: Stability analysis and time-varying walking control for an under-actuated planar biped robot. Robotics and Autonomous Systems 59, 444–456 (2011)

    Article  Google Scholar 

  25. Luh, J.Y.S., Walker, M.W., Paul, R.P.C.: On-line computational scheme for mechanical manipulators. ASME Journal of Dynamic Systems, Measurement, and Control 102, 69–76 (1980)

    Article  MathSciNet  Google Scholar 

  26. Grizzle, J.W., Plestan, F., Abba, G.: Poincaré’s method for systems with impulse effects: Application to mechanical biped locomotion. In: Proceedings of the 38th IEEE Conference on Decision & Control 3869–3876 (1999)

    Google Scholar 

  27. Cai, G.Q., Wu, C.: Modeling of bounded stochastic processes. Probabilistic Engineering Mechanics 19, 197–203 (2004)

    Article  Google Scholar 

  28. Gan, C.B.: Noise-induced chaos and basin erosion in softening Duffing oscillator. Chaos, Solitons and Fractals 25, 1069–1081 (2005)

    Article  MATH  Google Scholar 

  29. Chiddarwar, S.S., Babu, N.R.: Comparison of RBF and MLP neural networks to solve inverse kinematic problem for 6R serial robot by a fusion approach. Engineering Applications of Artificial Intelligence 23, 1083–1092 (2010)

    Article  Google Scholar 

  30. Manoonpong, P., Worgotter, F.: Efference copies in neural control of dynamic biped walking. Robotics and Autonomous Systems 57, 1140–1153 (2009)

    Article  Google Scholar 

  31. Choi, K.S., Lee, S.G..: Enhanced SLAM for a mobile robot using extended Kalman filter and neural networks. International Journal of Precision Engineering and Manufacturing 11, 255–264 (2010)

    Article  Google Scholar 

  32. Meng, Q.G., Lee, M.: Error-driven active learning in growing radial basis function networks for early robot learning. Neurocomputing 71, 1449–1461 (2008)

    Article  Google Scholar 

  33. Afantitis, A., Melagraki, G., Makridima, K., et al.: Prediction of high weight polymers glass transition temperature using RBF neural networks. Journal of Molecular Structure: Theochem 716, 193–198 (2005)

    Article  Google Scholar 

  34. Lin, C.L., Wang, J.F., Chen, C.Y., et al.: Improving the generalization performance of RBF neural networks using a linear regression technique. Expert Systems with Applications 36, 12049–12053 (2009)

    Article  Google Scholar 

  35. Villen, J., Senorans, F.J., Herraiz, M., et al.: Taguchi experimental design study of very large sample injection of pesticides in capillary gas chromatography. Journal of Chromatographic Science 36, 535–540 (1998)

    Article  Google Scholar 

  36. Taguchi, G.: Introduction to Quality Engineering: Designing Quality into Products and Processes. Asian Productivity Organization, Tokyo (1986)

    Google Scholar 

  37. Tang, Y. S., Yang, W. H.: Application of the Taguchi method to the optimization of the submerged arc welding process. Materials and Manufacturing Processes 13, 455–467 (1998)

    Article  Google Scholar 

  38. Makarov, D., Uleysky, M.: Specific Poincaré map for a randomly-perturbed nonlinear oscillator. Journal of Physics A: Mathematical and General 39, 489–497 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  39. Gan, C.B., Yang, S.X., Lei, H.: A kind of noise-induced transition to noisy chaos in stochastically perturbed dynamical system. Acta Mechanica Sinica 28, 1416–1423 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Biao Gan.

Additional information

The project was supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China (51221004), the National Natural Science Foundation of China (11172260, 11372270, and 51375434), the Higher School Specialized Research Fund for the Doctoral Program (20110101110016), the Science and technology project of Zhejiang Province (2013C31086), and the Fundamental Research Funds for the Central Universities of China (2013XZZX005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, CB., Ding, CT. & Yang, SX. Dynamical analysis and performance evaluation of a biped robot under multi-source random disturbances. Acta Mech Sin 30, 983–994 (2014). https://doi.org/10.1007/s10409-014-0074-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-014-0074-1

Keywords

Navigation