Skip to main content
Log in

A strain-isolation design for stretchable electronics

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Stretchable electronics represents a direction of recent development in next-generation semiconductor devices. Such systems have the potential to offer the performance of conventional wafer-based technologies, but they can be stretched like a rubber band, twisted like a rope, bent over a pencil, and folded like a piece of paper. Isolating the active devices from strains associated with such deformations is an important aspect of design. One strategy involves the shielding of the electronics from deformation of the substrate through insertion of a compliant adhesive layer. This paper establishes a simple, analytical model and validates the results by the finite element method. The results show that a relatively thick, compliant adhesive is effective to reduce the strain in the electronics, as is a relatively short film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogers J.A., Huang Y.: A curvy, stretchy future for electronics. PNAS 106, 10875–10876 (2009)

    Article  Google Scholar 

  2. Rogers J.A., Someya T., Huang Y.: Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010)

    Article  Google Scholar 

  3. Viventi J., Kim D.H., Moss J.D. et al.: A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Transl. Med. 2, 24ra22 (2010)

    Google Scholar 

  4. Kim D.H., Viventi J., Amsden J.J. et al.: Dissolvable films of silk fibroin for ultrathin, conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010)

    Article  Google Scholar 

  5. Wagner S., Lacour S.P., Jones J. et al.: Electronic skin: architecture and components. Physica E 25, 326–334 (2005)

    Article  Google Scholar 

  6. Ko H.C., Stoykovich M.P., Song J. et al.: A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008)

    Article  Google Scholar 

  7. Ko H.C., Shin G., Wang S. et al.: Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small 5, 2703–2709 (2009)

    Article  Google Scholar 

  8. Shin G., Jung I., Malyarchuk V. et al.: Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic eye cameras. Small 6, 851–856 (2010)

    Article  Google Scholar 

  9. Kim D.H., Ahn J.H, Choi W.M. et al.: Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008)

    Article  Google Scholar 

  10. Kim D.H., Choi W.M., Ahn J.H. et al.: Complementary metal oxide silicon integrated circuits incorporating monolithically integrated stretchable wavy interconnects. Appl. Phys. Lett. 93, 044102 (2008)

    Article  Google Scholar 

  11. Kim D.H., Song J., Choi W.M. et al.: Materials and non-coplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. PNAS 105, 18675–18680 (2008)

    Article  Google Scholar 

  12. Kim D.H., Liu Z., Kim Y.S. et al.: Optimized structural designs for stretchable silicon integrated circuits. Small 5, 2841–2847 (2009)

    Article  Google Scholar 

  13. Yoon J., Baca A.J., Park S.I. et al.: Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 7, 907–915 (2008)

    Article  Google Scholar 

  14. Baca A.J., Yu K.J., Xiao J. et al.: Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs. Energy Environ. Sci. 3, 208–211 (2010)

    Article  Google Scholar 

  15. Park S.L., Xiong Y., Kim R.H. et al.: Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009)

    Article  Google Scholar 

  16. Park S.I., Le A.P., Wu J. et al.: Light emission characteristics and mechanics of foldable inorganic light-emitting diodes. Adv. Mater. 22, 3062–3066 (2010)

    Article  Google Scholar 

  17. Huang Y., Zhou W., Hsia K.J. et al.: Stamp collapse in soft lithography. Langmuir 21, 8058–8068 (2005)

    Article  Google Scholar 

  18. Hsia K.J., Huang Y., Menard E. et al.: Collapse of stamps for soft lithography due to interfacial adhesion. Appl. Phys. Lett. 86, 154106 (2005)

    Article  Google Scholar 

  19. Zhou W., Huang Y., Menard E. et al.: Mechanism for stamp collapse in soft lithography. Appl. Phys. Lett. 87, 251925 (2005)

    Article  Google Scholar 

  20. Meitl M.A., Zhu Z.T., Kumar V. et al.: Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33–38 (2006)

    Article  Google Scholar 

  21. Meitl M.A., Feng X., Dong J. et al.: Stress focusing for controlled fracture in microelectromechanical systems. Appl. Phys. Lett. 90, 083110 (2007)

    Article  Google Scholar 

  22. Feng X., Meitl M.A., Bowen A.M. et al.: Competing fracture in kinetically controlled transfer printing. Langmuir 23, 12555–12560 (2007)

    Article  Google Scholar 

  23. Kim T.H., Carlson A., Ahn J.H. et al.: Kinetically controlled, adhesiveless transfer printing using microstructured stamps. Appl. Phys. Lett. 94, 113502 (2009)

    Article  Google Scholar 

  24. Kim, S., Wu, J., Carlson, A., et al.: Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. PNAS. 107, 17095–17100 (2010)

  25. Kim D.H., Kim Y.S., Wu J. et al.: Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Adv. Mater. 21, 3703–3707 (2009)

    Article  Google Scholar 

  26. Khang D.Y., Jiang H., Huang Y. et al.: A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006)

    Article  Google Scholar 

  27. Sun Y., Choi W.M., Jiang H. et al.: Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1, 201–207 (2006)

    Article  Google Scholar 

  28. Jiang H., Sun Y., Rogers J.A. et al.: Mechanics of precisely controlled thin film buckling on elastomeric substrate. Appl. Phys. Lett. 90, 133119 (2007)

    Article  Google Scholar 

  29. Choi W.M., Song J., Khang D.Y. et al.: Biaxially stretchable “Wavy” silicon nanomembranes. Nano Lett. 7, 1655–1663 (2007)

    Article  Google Scholar 

  30. Song J., Jiang H., Choi W.M. et al.: An analytical study of two-dimensional buckling of thin films on compliant substrates. J. Appl. Phys. 103, 014303 (2008)

    Article  Google Scholar 

  31. Ryu S.Y., Xiao J., Park W. et al.: Lateral buckling mechanics in silicon nanowires on elastomeric substrates. Nano Lett. 9, 3214–3219 (2009)

    Article  Google Scholar 

  32. Xiao J., Ryu S.Y., Huang Y. et al.: Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates. Nanotechnology 21, 085708 (2010)

    Article  Google Scholar 

  33. Song T., Xia J., Lee J.H. et al.: Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 10, 1710–1716 (2010)

    Article  Google Scholar 

  34. Khang D.Y., Xiao J., Kocabas C. et al.: Molecular scale buckling mechanics on individual aligned single-wall carbon nanotubes on elastomeric substrates. Nano Lett. 8, 124–130 (2008)

    Article  Google Scholar 

  35. Xiao J., Jiang H., Khang D.Y. et al.: Mechanics of buckled carbon nanotubes on elastomeric substrates. J. Appl. Phys. 104, 033543 (2008)

    Article  Google Scholar 

  36. Xiao J., Dunham S., Liu P. et al.: Alignment controlled growth of single-walled carbon nanotubes on quartz substrates. Nano Lett. 9, 4311–4319 (2009)

    Article  Google Scholar 

  37. Bowden N., Brittain S., Evans A.G. et al.: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998)

    Article  Google Scholar 

  38. Koh C.T., Liu Z.J., Khang D.Y. et al.: Edge effects in buckled thin films on elastomeric substrates. Appl. Phys. Lett. 91, 133113 (2007)

    Article  Google Scholar 

  39. Jiang H., Khang D.Y., Fei H. et al.: Finite width effect of thin-films buckling on compliant substrate: experimental and theoretical studies. J. Mech. Phys. Solids 56, 2585–2598 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. Jiang H., Sun Y., Rogers J.A. et al.: Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates. Int. J. Solids Struct. 45, 2014–2023 (2008)

    Article  MATH  Google Scholar 

  41. Mei H., Chung J.Y., Yu H.H. et al.: Buckling modes of elastic thin films on elastic substrates. Appl. Phys. Lett. 90, 151902 (2007)

    Article  Google Scholar 

  42. Wang S., Song J., Kim D.H. et al.: Local versus global buckling of thin films on elastomeric substrates. Appl. Phys. Lett. 93, 023126 (2008)

    Article  Google Scholar 

  43. Im S.H., Huang R.: Wrinkle patterns of anisotropic crystal films on viscoelastic substrates. J. Mech. Phys. Solids 56, 3315–3330 (2008)

    Article  MATH  Google Scholar 

  44. Pang Y., Huang R.: Effect of elastic anisotropy on surface pattern evolution of epitaxial thin films. Int. J. Solids Struct. 46, 2822–2833 (2009)

    Article  MATH  Google Scholar 

  45. Song J.: Herringbone buckling patterns of anisotropic thin films on elastomeric substrates. Appl. Phys. Lett. 96, 051913 (2010)

    Article  Google Scholar 

  46. Xiao J., Carlson A., Liu Z.J. et al.: Stretchable and compressible thin films of stiff materials on compliant wavy substrates. Appl. Phys. Lett. 93, 013109 (2008)

    Article  Google Scholar 

  47. Xiao J., Carlson A., Liu Z. et al.: Analytical and experimental studies of the mechanics of deformation in a solid with a wavy surface profile. J. Appl. Mech. 77, 011003 (2010)

    Article  Google Scholar 

  48. Chen X., Hutchinson J.W.: Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech. 71, 597–603 (2004)

    Article  MATH  Google Scholar 

  49. Huang Z.Y., Hong W., Suo Z.: Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53, 2101–2118 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  50. Audoly B., Boudaoud A.: Buckling of a stiff film bound to a compliant substrate—Part I: Formation, linear stability of cylindrical patters, secondary bifurcations. J. Mech. Phys. Solids 56, 2401–2421 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  51. Audoly B., Boudaoud A.: Buckling of a stiff film bound to a compliant substrate—Part II: A global scenario for the formation of herringbone pattern. J. Mech. Phys. Solids 56, 2422–2443 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  52. Audoly B., Boudaoud A.: Buckling of a stiff film bound to a compliant substrate—Part III: Herringbone solutions at large buckling parameter. J. Mech. Phys. Solids 56, 2444–2458 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  53. Jiang H., Khang D.Y., Song J. et al.: Finite deformation mechanics in buckled thin films on compliant supports. PNAS 104, 15607–15612 (2007)

    Article  Google Scholar 

  54. Song J., Jiang H., Liu Z. et al.: Buckling of a stiff thin film on a compliant substratein large deformation. Int. J. Solids Struct. 45, 3107–3121 (2008)

    Article  MATH  Google Scholar 

  55. Huang R.: Kinetic wrinkling of an elastic film on a viscoelastic substrate. J. Mech. Phys. Solids 53, 63–89 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  56. Li T., Suo Z.: Ductility of thin metal films on polymer substrates modulated by interfacial adhesion. Int. J. Solids Struct. 44, 1696–1705 (2007)

    Article  MATH  Google Scholar 

  57. Baca A.J., Ahn J.H., Sun Y. et al.: Semiconductor wires and ribbons for high-performance flexible electronics. Angew. Chem. Int. Ed. 47, 5524–5542 (2008)

    Article  Google Scholar 

  58. Song J., Jiang H., Huang Y. et al.: Mechanics of stretchable inorganic electronic materials. J. Vac. Sci. Technol. A 27, 1107–1125 (2009)

    Article  Google Scholar 

  59. Timoshenko S.P., Gere J.M.: Theory of Elastic Stability. McGraw-Hill, New York (1963)

    Google Scholar 

  60. Song J., Huang Y., Xiao J. et al.: Mechanics of non-coplanar mesh design for stretchable electronic circuits. J. Appl. Phys. 105, 123516 (2009)

    Article  Google Scholar 

  61. Wang S., Xiao J., Jung I. et al.: Mechanics of hemispherical electronics. Appl. Phys. Lett. 95, 181912 (2009)

    Article  Google Scholar 

  62. Kim D.H., Xiao J., Song J. et al.: Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22, 2108–2124 (2010)

    Article  Google Scholar 

  63. Mcdonald J.C., Whitesides G.M.: Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491–499 (2002)

    Article  Google Scholar 

  64. Maltezos G., Nortrup R., Jeon S. et al.: Tunable organic transistors that use microfluidic source and drain electrodes. Appl. Phys. Lett. 83, 10 (2003)

    Article  Google Scholar 

  65. Kim H.J., Son Ch., Ziaie B.: A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Appl. Phys. Lett. 92, 011904 (2008)

    Article  Google Scholar 

  66. So J.H., Thelen J., Qusba A. et al.: Reversibly deformable and mechanically tunable fluidic antennas. Adv. Funct. Mater. 19, 3632–3637 (2009)

    Article  Google Scholar 

  67. Siegel A.C., Tang S.K.Y., Nijhuis C.A. et al.: Cofabrication: a strategy for building multicomponent microsystems. Acc. Chem. Res. 43, 518–528 (2010)

    Article  Google Scholar 

  68. Jones J., Lacour S.P., Wagner S. et al.: Stretchable wavy metal interconnects. J. Vac. Sci. Technol. A 22, 1723–1725 (2004)

    Article  Google Scholar 

  69. Li T., Suo Z., Lacour S.P. et al.: Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J. Mater. Res. 20, 3274–3277 (2005)

    Article  Google Scholar 

  70. Brosteaux D., Axisa F., Gonzalez M. et al.: Design and fabrication of elastic interconnections for stretchable electronic circuits. IEEE Electron Devices Lett. 28, 552–554 (2007)

    Article  Google Scholar 

  71. Zoumpoulidisa T., Barteka M., de Graafb P. et al.: High-aspect-ratio through-wafer parylene beams for stretchable silicon electronics. Sens. Actuators A 156, 257–264 (2009)

    Article  Google Scholar 

  72. Hsu Y.Y., Gonzalez M., Wolf I.D.: In situ observations on deformation behavior and stretchinginduced failure of fine pitch stretchable interconnect. J. Mater. Res. 24, 3573–3582 (2009)

    Article  Google Scholar 

  73. Kim H.J., Maleki T., Wei P. et al.: A biaxial stretchable interconnect with liquid-alloy-covered joints on elastomeric substrate. J. Microelectromech. Syst. 18, 138–146 (2009)

    Article  Google Scholar 

  74. Lin K.L., Jain K.: Design and fabrication of stretchable multilayer self-aligned interconnects for flexible electronics and large-area sensor arrays using excimer laser photoablation. IEEE Electron Devices Lett. 30, 14–17 (2009)

    Article  Google Scholar 

  75. Ahn J.H., Zhu Z., Park S.I. et al.: Defect tolerance and nanomechanics in transistors that use semiconductor nanomaterials and ultrathin dielectrics. Adv. Funct. Mater. 18, 2535–2540 (2008)

    Article  Google Scholar 

  76. Park S.I., Ahn J.H., Feng X. et al.: Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Adv. Funct. Mater. 18, 2673–2684 (2008)

    Article  Google Scholar 

  77. Jiang Z., Huang Y., Chandra A.: Thermal stresses in layered electronic assemblies. J. Electron. Packag. 119, 127–132 (1997)

    Article  Google Scholar 

  78. Wang K.P., Huang Y.Y., Chandra A. et al.: Interfacial shear stress, peeling stress, and die cracking stress in trilayer electronic assemblies. IEEE TCPT 23, 309–316 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Gang Huang.

Additional information

The project was supported by NSF (DMI-0328162 and ECCS-0824129), the National Natural Science Foundation of China (10820101048), Ministry of Education of China, and the National Basic Research Program of China (2007CB936803).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Li, M., Chen, WQ. et al. A strain-isolation design for stretchable electronics. Acta Mech Sin 26, 881–888 (2010). https://doi.org/10.1007/s10409-010-0384-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-010-0384-x

Keywords

Navigation