Skip to main content
Log in

A hybrid finite volume/finite element method for incompressible generalized Newtonian fluid flows on unstructured triangular meshes

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper presents a hybrid finite volume/finite element method for the incompressible generalized Newtonian fluid flow (Power-Law model). The collocated (i.e. non-staggered) arrangement of variables is used on the unstructured triangular grids, and a fractional step projection method is applied for the velocity-pressure coupling. The cell-centered finite volume method is employed to discretize the momentum equation and the vertex-based finite element for the pressure Poisson equation. The momentum interpolation method is used to suppress unphysical pressure wiggles. Numerical experiments demonstrate that the current hybrid scheme has second order accuracy in both space and time. Results on flows in the lid-driven cavity and between parallel walls for Newtonian and Power-Law models are also in good agreement with the published solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patankar S.V., Spalding D.B.: A calculation procedure for heat, mass and momentum transfer i three-dimensional parabolic flows. Int. J. Heat Mass Transfer 15, 1787–1806 (1972)

    Article  MATH  Google Scholar 

  2. Chorin A.J.: Numerical solution of the Navier–Stokes equations. Math. Comp. 22, 745–762 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  3. Temam R.: Sur l’approximation de la solution del equations Navier–Stokes par la methode des pas fractionnaires (II). Arch. Rat. Mech. Anal. 32, 377–385 (1969)

    Article  Google Scholar 

  4. Rhie C.M., Chow W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)

    Article  MATH  Google Scholar 

  5. Zang Y., Street R.L., Koseff J.R.: A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates. J. Comput. Phys. 114, 18–33 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boivin S., Cayré F., Hérard J.M.: A finite volume method to solve the Navier–Stokes equations for incompressible flows on unstructured meshes. Int. J. Therm. Sci. 39, 806–825 (2000)

    Article  Google Scholar 

  7. Kim D., Choi H.: A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids. J. Comput. Phys. 162, 411–428 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gao W., Liu R.: The finite-volume projection method on hybrid collocated unstructured triangular grids for incompressible viscous flows. J. Hydrodyn. Ser. B 2, 201–211 (2009)

    Article  Google Scholar 

  9. Lien F.S.: A pressure-based unstructured grid method for all-speed flows. Int. J. Numer. Methods Fluids 33, 355–374 (2000)

    Article  MATH  Google Scholar 

  10. Tu S., Aliabadi S.: Development of a hybrid finite volume/element solver for incompressible flows. Int. J. Numer. Methods Fluids 55, 177–203 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hwang Y.H.: Calculations of incompressible flow on a staggered triangular grid, Part I: mathematical formulation. Numer. Heat Transfer Part B 27, 323–336 (1995)

    Article  Google Scholar 

  12. Crochet M.J., Davies A.R., Walters K.: Numerical Simulation of Non-Newtonian Flow. Elsevier, Amsterdam (1984)

    MATH  Google Scholar 

  13. Bercovier M., Engelman M.: A finite element method for incompressible non-Newtonian flows. J. Comput. Phys. 36, 313–326 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bell B.C., Surana K.S.: p-version least squares finite element formulation for two-dimensional incompressible, non-Newtonian isothermal and non-isothermal fluid flow. Int. J. Numer. Meth. Fluids 18, 127–162 (1994)

    Article  MATH  Google Scholar 

  15. Bose A., Carey G.F.: Least-squares p-r finite element methods for incompressible non-Newtonian flows. Comput. Methods Appl. Mech. Eng. 180, 431–458 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Saramito P., Roquet N.: An adapative finite element method for viscoplastic fluid flows in pipes. Comput. Methods Appl. Mech. Eng. 190, 5391–5412 (2001)

    Article  MATH  Google Scholar 

  17. Bao W.: An economical finite element approximation of generalized Newtonian flows. Comput. Methods Appl. Mech. Eng. 191, 3637–3648 (2002)

    Article  MATH  Google Scholar 

  18. Dean E.J., Glowinski R., Guidoboni G.: On the numerical simulation of Bingham visco-plastic flow: old and new results. J. Non-Newtonian Fluid Mech. 142, 36–62 (2007)

    Article  MATH  Google Scholar 

  19. Borggaard J., Iliescua T., Roop J.P.: An improved penalty method for power-law Stokes problems. J. Comput. Appl. Math. 223, 646–658 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Blazek J.: Computational Fluid Dynamics: Principles and Applications. Elsevier, Amsterdam (2001)

    MATH  Google Scholar 

  21. Lenonard B.P.: Simple high-accuracy resolution program for convective modelling discontinuities. Int. J. Numer. Meth. Fluids 8, 1291–1318 (1988)

    Article  Google Scholar 

  22. Gaskell P.H., Lau A.K.C.: Curvature-compensated convective transport: SMART, a new boundedness-preserving transport algorithm. Int. J. Numer. Meth. Fluids 8, 617–641 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. Van Leer B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

  24. Neofytou P.: A 3rd ordr upwind finite volume method for generalised Newtonian fluid flows. Adv. Eng. Softw. 36, 664–680 (2005)

    Article  MATH  Google Scholar 

  25. Neofytou P., Drikakis D.: Effects of blood models on flows through a stenosis. Int. J. Numer. Methods Fluids 43, 597–635 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Miranda A.I.P., Oliveira P.J., Pinho F.T.: Steady and unsteady laminar flows of Newtonian and generalized Newtonian fluids in a planar T-junction. Int. J. Numer. Meth. Fluids 57, 295–328 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tomé M.F., Duffy B., McKee S.: A numerical technique for solving unsteady non-Newtonian free surface flows. J. Non-Newtonian Fluid Mech. 62, 9–34 (1996)

    Article  Google Scholar 

  28. Tomé M.F., Grossi L. et al.: A numerical method for solving three-dimensional generalized Newtonian free surface flows. J. Non-Newtonian Fluid Mech. 123, 85–103 (2004)

    Article  MATH  Google Scholar 

  29. Gabbanelli S., Drazer G., Koplik J.: Lattice Boltzmann method for non-Newtonian (power-law) fluids. Phys. Rev. E 72, 04631 (2005)

    Article  Google Scholar 

  30. Yoshino M., Hotta Y., Hirozane T., Endo M.: A numerical method for incompressible non-Newtonian fluid flows based on the lattice Boltzmann method. J. Non-Newtonian Fluid Mech. 147, 69–78 (2007)

    Article  Google Scholar 

  31. Pakdemirli M., Aksoy Y., Yürüsoy M., Khalique C.M.: Symmetries of boundary layer equations of power-law fluids of second grade. Acta Mech. Sin. 24(6), 661–670 (2008)

    Article  MathSciNet  Google Scholar 

  32. Van Kan J.: A second-order accurate pressure-correction shceme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 3, 870–891 (1986)

    Google Scholar 

  33. Gresho P.M.: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent matrix, Part 1: theory. Int. J. Numer. Methods Fluids 11, 587–620 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  34. Khosla P.K., Rubin S.G.: A diagonally dominant second-order accurate implicit scheme. Comput. Fluids 2, 207–209 (1974)

    Article  MATH  Google Scholar 

  35. Mathur S.R., Murthy J.Y.: A pressure-based method for unstructured meshes. Numer. Heat Transfer, Part B 31, 195–215 (1997)

    Article  Google Scholar 

  36. Carey G.F., Krishnan R.: Penalty approximation of Stokes flow. Comput. Methods Appl. Mech. Eng. 35, 169–206 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  37. Ghia U., Ghia K.N., Shin C.T.: High-resolutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Gao.

Additional information

The project supported by the National Natural Science Foundation of China (10771134).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, W., Liu, R. A hybrid finite volume/finite element method for incompressible generalized Newtonian fluid flows on unstructured triangular meshes. Acta Mech Sin 25, 747–760 (2009). https://doi.org/10.1007/s10409-009-0281-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0281-3

Keywords

Navigation