Skip to main content
Log in

New applications for noninvasive cardiac imaging: dual-source computed tomography

  • Impact of MDCT on the Management of Cardiovascular Diseases
  • Published:
European Radiology Supplements

Abstract

Coronary catheter angiography is considered to be the standard of reference for the diagnosis of coronary artery disease (CAD) and the grading of coronary artery stenoses. Even with the established generation of 16- and 64-multislice CT (MSCT) systems, with remarkable results reported for diagnostic accuracy, a substantial number of limitations remain, hindering full acceptance of the method as a standard technique in the clinical cascade for CAD patients. Recently, dual-source CT (DSCT) with improved temporal resolution has been introduced into clinical routine, raising the hope that some of the earlier problems might be overcome. MSCTA with 64-slice CT scanners has successfully been validated for the evaluation of clinically relevant lumen reduction of the coronary arteries with high negative predictive values and for the simultaneous assessment of pulmonary embolism, coronary artery stenoses, and aortic dissection and aneurysm in patients with chest pain (“triple rule out”). However, certain limitations continue to exist including partial volume effects due to heavy calcium deposits in the coronary artery wall, impaired assessability of coronary artery branches smaller than 2 mm in diameter, and impaired assessability of patients with a high heart rate and/or arrhythmia. While MSCT has mainly been tested to detect obstructive CAD, an accurate assessment of regional and global ventricular function, as well as of the aortic and mitral valves, might be feasible using DSCT, since image reconstruction is possible in virtually any phase of the cardiac cycle with a sufficiently high temporal resolution. DSCT is a robust method for the evaluation of patients with higher heart rates and arrhythmias and, in most cases, obviates the need for beta-blocker premedication. While the evaluation of coronary artery stenoses will remain the primary clinical indication for cardiac DSCT, a simultaneous and sufficiently accurate assessment of global left ventricular functional parameters, regional wall motion, and valve assessment becomes feasible with a single scan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nikolaou K, Knez A, Rist C et al (2006) Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol 187(1):111–117

    Article  PubMed  Google Scholar 

  2. Stein PD, Beemath A, Skaf E et al (2005) Usefulness of 4-, 8-, and 16-slice computed tomography for detection of graft occlusion or patency after coronary artery bypass grafting. Am J Cardiol 96(12):1669–1673

    Article  PubMed  Google Scholar 

  3. Herzog C, Dogan S, Diebold T et al (2003) Multi-detector row CT versus coronary angiography: preoperative evaluation before totally endoscopic coronary artery bypass grafting. Radiology 229(1):200–208

    Article  PubMed  Google Scholar 

  4. Rist C, Nikolaou K, Wintersperger BJ, et al (2004) Indications for multislice CT angiography of coronary arteries. Radiologe 44(2):121–129

    Article  PubMed  CAS  Google Scholar 

  5. Shi H, Aschoff AJ, Brambs HJ, Hoffmann MH (2004) Multislice CT imaging of anomalous coronary arteries. Eur Radiol 14(12):2172–2181

    Article  PubMed  Google Scholar 

  6. Rist C, von Ziegler F, Nikolaou K et al (2006) Assessment of coronary artery stent patency and restenosis using 64-slice computed tomography. Acad Radiol 13(12):1465–1473

    Article  PubMed  Google Scholar 

  7. Leber AW, Knez A, von Ziegler F et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46(1):147–154

    Article  PubMed  Google Scholar 

  8. Mollet NR, Cademartiri F, van Mieghem CA et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112(15):2318–2323

    Article  PubMed  Google Scholar 

  9. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46(3):552–557

    Article  PubMed  Google Scholar 

  10. Wintersperger BJ, Nikolaou K, von Ziegler F et al (2006) Image quality, motion artifacts, and reconstruction timing of 64-slice coronary computed tomography angiography with 0.33-second rotation speed. Invest Radiol 41(5):436–442

    Article  PubMed  Google Scholar 

  11. Flohr T, Stierstorfer K, Bruder H et al (2002) New technical developments in multislice CT — Part 1: Approaching isotropic resolution with submillimeter 16-slice scanning. Rofo 174(7):839–845

    PubMed  CAS  Google Scholar 

  12. Flohr T, Bruder H, Stierstorfer K et al (2002) New technical developments in multislice CT, part 2: sub-millimeter 16-slice scanning and increased gantry rotation speed for cardiac imaging. Rofo 174(8):1022–1027

    PubMed  CAS  Google Scholar 

  13. Ropers D, Baum U, Pohle K, et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107(5):664–666

    Article  PubMed  Google Scholar 

  14. Flohr T, Stierstorfer K, Raupach R et al (2004) Performance evaluation of a 64-slice CT system with z-flying focal spot. Rofo 176(12):1803–1810

    PubMed  CAS  Google Scholar 

  15. Nikolaou K, Flohr T, Knez A et al (2004) Advances in cardiac CT imaging: 64-slice scanner. Int J Cardiovasc Imaging 20(6):535–540

    Article  PubMed  Google Scholar 

  16. Robb RA, Ritman EL (1979) High speed synchronous volume computed tomography of the heart. Radiology 133(3 Pt 1):655–661

    PubMed  CAS  Google Scholar 

  17. Ritman EL, Kinsey JH, Robb RA et al (1980) Three-dimensional imaging of heart, lungs, and circulation. Science 210(4467):273–280

    Article  PubMed  CAS  Google Scholar 

  18. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16(2):256–268

    Article  PubMed  Google Scholar 

  19. Achenbach S, Ropers D, Kuettner A et al (2006) Contrast-enhanced coronary artery visualization by dualsource computed tomography — initial experience. Eur J Radiol 57(3):331–335

    Article  PubMed  Google Scholar 

  20. Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17(6):1510–1517

    Article  PubMed  Google Scholar 

  21. Hong C, Becker CR, Huber A et al (2001) ECG-gated reconstructed multi-detector row CT coronary angiography: effect of varying trigger delay on image quality. Radiology 220(3):712–717

    Article  PubMed  CAS  Google Scholar 

  22. Johnson TR, Nikolaou K, Wintersperger BJ et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16(7):1409–1415

    Article  PubMed  Google Scholar 

  23. Leschka S, Scheffel H, Desbiolles L et al (2007) Image quality and reconstruction intervals of dual-source CT coronary angiography: recommendations for ECG-pulsing windowing. Invest Radiol 42(8):543–549

    Article  PubMed  Google Scholar 

  24. Rist C, Johnson TR, Becker A et al (2007) Dual-source cardiac CT imaging with improved temporal resolution: impact on image quality and analysis of left ventricular function. Radiologe 47(4):287–290, 292–294

    Article  PubMed  Google Scholar 

  25. Leber AW, Johnson T, Becker A et al (2007) Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J 28(19):2354–2360

    Article  PubMed  Google Scholar 

  26. Grundy SM, Balady GJ, Criqui MH et al (1998) Primary prevention of coronary heart disease: guidance from Framingham: a statement for healthcare professionals from the AHA Task Force on Risk Reduction. American Heart Association. Circulation 97(18):1876–1887

    CAS  Google Scholar 

  27. Nieman K, Cademartiri F, Lemos P et al (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054

    Article  PubMed  Google Scholar 

  28. Nikolaou K, Rist C, Wintersperger BJ et al (2006) Clinical value of MDCT in the diagnosis of coronary artery disease in patients with a low pretest likelihood of significant disease. AJR Am J Roentgenol 186(6):1659–1668

    Article  PubMed  Google Scholar 

  29. Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26(15):1482–1487

    Article  PubMed  Google Scholar 

  30. Fine JJ, Hopkins CB, Ruff N, Newton FC (2006) Comparison of accuracy of 64-slice cardiovascular computed tomography with coronary angiography in patients with suspected coronary artery disease. Am J Cardiol 97(2):173–174

    Article  PubMed  Google Scholar 

  31. Ong TK, Chin SP, Liew CK et al (2006) Accuracy of 64-row multidetector computed tomography in detecting coronary artery disease in 134 symptomatic patients: influence of calcification. Am Heart J 151(6):1323.e1–6

    Article  Google Scholar 

  32. Pugliese F, Mollet NR, Runza G et al (2006) Diagnostic accuracy of noninvasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 16(3):575–582

    Article  PubMed  Google Scholar 

  33. Ropers D, Rixe J, Anders K et al (2006) Usefulness of multidetector row spiral computed tomography with 64-× 0.6-mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol 97(3):343–348

    Article  PubMed  Google Scholar 

  34. Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16(12):2739–2747

    Article  PubMed  Google Scholar 

  35. Johnson TRC, Nikolaou K, Busch S et al (2007) Diagnostic accuracy of dualsource computed tomography in the diagnosis of coronary artery disease. Invest Radiol 42:684–691

    Article  PubMed  Google Scholar 

  36. Virmani R, Kolodgie FD, Burke AP et al (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20(5):1262–1275

    PubMed  CAS  Google Scholar 

  37. Kunimasa T, Sato Y, Sugi K, Moroi M (2005) Evaluation by multislice computed tomography of atherosclerotic coronary artery plaques in non-culprit, remote coronary arteries of patients with acute coronary syndrome. Circ J 69(11):1346–1351

    Article  PubMed  Google Scholar 

  38. Rosamond W, Flegal K, Friday G et al (2007) Heart disease and stroke statistics — 2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115(5):e69–171

    Article  PubMed  Google Scholar 

  39. Boden WE, O’Rourke RA, Teo KK et al (2007) Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 356(15):1503–1516

    Article  PubMed  CAS  Google Scholar 

  40. Maintz D, Grude M, Fallenberg EM et al (2003) Assessment of coronary arterial stents by multislice-CT angiography. Acta Radiol 44(6):597–603

    Article  PubMed  CAS  Google Scholar 

  41. Mahnken AH, Buecker A, Wildberger JE et al (2004) Coronary artery stents in multislice computed tomography: in vitro artifact evaluation. Invest Radiol 39(1):27–33

    Article  PubMed  Google Scholar 

  42. Schuijf JD, Bax JJ, Jukema JW et al (2004) Feasibility of assessment of coronary stent patency using 16-slice computed tomography. Am J Cardiol 94(4):427–430

    Article  PubMed  Google Scholar 

  43. Gaspar T, Halon DA, Lewis BS et al (2005) Diagnosis of coronary in-stent restenosis with multidetector row spiral computed tomography. J Am Coll Cardiol 46(8):1573–1579

    Article  PubMed  Google Scholar 

  44. Seifarth H, Ozgun M, Raupach R et al (2006) 64-Versus 16-slice CT angiography for coronary artery stent assessment: in vitro experience. Invest Radiol 41(1):22–27

    Article  PubMed  Google Scholar 

  45. Lell MM, Panknin C, Saleh R et al (2007) Evaluation of coronary stents and stenoses at different heart rates with dual source spiral CT (DSCT). Invest Radiol 42(7):536–541

    Article  PubMed  Google Scholar 

  46. Ropers D, Pohle FK, Kuettner A et al (2006) Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation 114(22):2334–2341

    Article  PubMed  Google Scholar 

  47. Chiurlia E, Menozzi M, Ratti C et al (2005) Follow-up of coronary artery bypass graft patency by multislice computed tomography. Am J Cardiol 95(9):1094–1097

    Article  PubMed  Google Scholar 

  48. Nikolaou K, Saam T, Rist C et al (2007) Pre- and postsurgical diagnostics with dual-source computed tomography in cardiac surgery. Radiologe 47(4):310–318

    Article  PubMed  CAS  Google Scholar 

  49. Fischbach R, Heindel W (2000) Detection and quantification of coronary calcification: an update. Rofo 172(5):407–414

    PubMed  CAS  Google Scholar 

  50. Fischbach R, Juergens KU, Ozgun M et al (2007) Assessment of regional left ventricular function with multidetector-row computed tomography versus magnetic resonance imaging. Eur Radiol 17(4):1009–1017

    Article  PubMed  Google Scholar 

  51. Johnson TR, Nikolaou K, Wintersperger BJ et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16(7):1409–1415

    Article  PubMed  Google Scholar 

  52. Johnson TR, Nikolaou K, Wintersperger BJ et al (2007) ECG-gated 64-MDCT angiography in the differential diagnosis of acute chest pain. AJR Am J Roentgenol 188(1):76–82

    Article  PubMed  Google Scholar 

  53. Leschka S, Wildermuth S, Boehm T et al (2006) Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality. Radiology 241(2):378–385

    Article  PubMed  Google Scholar 

  54. Johnson TR, Nikolaou K, Fink C et al (2007) Dual-source CT in chest pain diagnosis. Radiologe 47(4):301–309

    Article  PubMed  Google Scholar 

  55. Nikolaou K, Sagmeister S, Knez A et al (2003) Multidetector-row computed tomography of the coronary arteries: predictive value and quantitative assessment of non-calcified vessel-wall changes. Eur Radiol 13(11):2505–2512

    Article  PubMed  Google Scholar 

  56. Schroeder S, Kopp AF, Baumbach A et al (2001) Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 37(5):1430–1435

    Article  PubMed  CAS  Google Scholar 

  57. Becker CR, Hong C, Knez A et al (2003) Optimal contrast application for cardiac 4-detector-row computed tomography. Invest Radiol 38(11):690–694

    Article  PubMed  Google Scholar 

  58. Rist C, Nikolaou K, Kirchin MA et al (2006) Contrast bolus optimization for cardiac 16-slice computed tomography: comparison of contrast medium formulations containing 300 and 400 milligrams of iodine per milliliter. Invest Radiol 41(5):460–467

    Article  PubMed  Google Scholar 

  59. Cademartiri F, de Monye C, Pugliese F et al (2006) High iodine concentration contrast material for noninvasive multislice computed tomography coronary angiography: iopromide 370 versus iomeprol 400. Invest Radiol 41(3):349–353

    Article  PubMed  Google Scholar 

  60. Cademartiri F, Mollet NR, Lemos PA et al (2006) Higher intracoronary attenuation improves diagnostic accuracy in MDCT coronary angiography. AJR Am J Roentgenol 187(4):W430–W433

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Rist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rist, C., Johnson, T.R., Becker, C.R. et al. New applications for noninvasive cardiac imaging: dual-source computed tomography. Eur Radiol Suppl 17 (Suppl 6), 16–25 (2007). https://doi.org/10.1007/s10406-007-0224-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10406-007-0224-7

Keywords

Navigation