Skip to main content
Log in

Molekulare Medizin genetisch determinierter Erkrankungen am Beispiel der zystischen Fibrose

Molecular medicine of genetically determined diseases exemplified by cystic fibrosis

  • Leitthema
  • Published:
Der Pneumologe Aims and scope

Zusammenfassung

Für viele monogene Erkrankungen ist eine genetische Therapie sicher in Zukunft möglich, aber aktuell noch weit von der klinischen Anwendung entfernt. So ist es auch bei der zystischen Fibrose (CF). Molekulare Therapie mit neuen Substanzen modulieren die Struktur des defekten Eiweißes und verbessern dessen Quantität und Qualität. Dies führt zu einer je nach Effektivität des Modulators gesteigerten Aktivität des defekten Proteins. Diese Effekte in klinischen Studien messbar zu machen, ist nicht immer einfach. Etablierte Marker, wie z. B. das forcierte exspiratorische Volumen (FEV1, Einsekundenkapazität) sind oft ungeeignet und besonders bei früher Intervention in den ersten Lebensjahren nicht anwendbar. Neue Biomarker sind erforderlich zur Überprüfung der Therapieeffekte. Diese Übersichtsarbeit beschäftigt sich mit den neuen Entwicklungen in Bezug auf die molekularen Therapien bei der CF und deren Effekte in klinischen Studien.

Abstract

For many monogenic diseases, genetic therapy is certainly possible in the future but currently still far away from clinical use. It is the same with cystic fibrosis (CF). Molecular therapy with new substances modulates the structure of the defective protein and improves its quantity and quality. This leads to an increased activity of the defective protein, depending on the effectiveness of the modulator. Measuring these effects in clinical trials is not always simple. Established markers, such as the forced expiratory volume in 1 s (FEV1) are often inappropriate and not applicable especially in early interventions within the first years of life. New biomarkers are urgently needed to evaluate the effects of treatment. This review article summarizes new developments with respect to molecular therapies in CF and their effects in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1

Literatur

  1. Farrell P, Ferec C, Macek M, Frischer T, Renner S, Riss K, Barton D, Repetto T, Tzetis M, Giteau K, Duno M, Rogers M, Levy H, Sahbatou M, Fichou Y, Le Marechal C, Genin E (2018) Estimating the age of p.(Phe508del) with family studies of geographically distinct European populations and the early spread of cystic fibrosis. Eur J Hum Genet 26:1832–1839

    Article  CAS  Google Scholar 

  2. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary. DNA 245:1066–1073

    CAS  Google Scholar 

  3. Hirtz S, Gonska T, Seydewitz HH, Thomas J, Greiner P, Kuehr J, Brandis M, Eichler I, Rocha H, Lopes AI, Barreto C, Ramalho A, Amaral MD, Kunzelmann K, Mall M (2004) CFTR Cl-channel function in native human colon correlates with the genotype and phenotype in cystic fibrosis. Gastroenterology 127:1085–1095

    Article  CAS  Google Scholar 

  4. Gentzsch M, Mall MA (2018) Ion channel modulators in cystic fibrosis. Chest 154:383–393

    Article  Google Scholar 

  5. Cystic Fibrosis Foundation (2019) Drug Development Pipeline. www.cff.org/Trials/Pipeline. Zugegriffen: 4. Juni 2019

  6. Van Goor F, Hadida S, Grootenhuis PD, Burton B, Cao D, Neuberger T, Turnbull A, Singh A, Joubran J, Hazlewood A, Zhou J, McCartney J, Arumugam V, Decker C, Yang J, Young C, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu P (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci U S A 106:18825–18830

    Article  Google Scholar 

  7. Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, Drevinek P, Griese M, McKone EF, Wainwright CE, Konstan MW, Moss R, Ratjen F, Sermet-Gaudelus I, Rowe SM, Dong Q, Rodriguez S, Yen K, Ordonez C, Elborn JS (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663–1672

    Article  CAS  Google Scholar 

  8. Wainwright CE, Elborn JS, Ramsey BW (2015) Lumacaftor-Ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med 373:1783–1784

    Article  Google Scholar 

  9. Davies J, Sheridan H, Bell N, Cunningham S, Davis SD, Elborn JS, Milla CE, Starner TD, Weiner DJ, Lee PS, Ratjen F (2013) Assessment of clinical response to ivacaftor with lung clearance index in cystic fibrosis patients with a G551D-CFTR mutation and preserved spirometry: a randomised controlled trial. Lancet Respir Med 1:630–638

    Article  CAS  Google Scholar 

  10. Donaldson SH, Pilewski JM, Griese M, Cooke J, Viswanathan L, Tullis E, Davies JC, Lekstrom-Himes JA, Wang LT (2018) Tezacaftor/Ivacaftor in subjects with cystic fibrosis and F508del/F508del-CFTR or F508del/G551D-CFTR. Am J Respir Crit Care Med 197:214–224

    Article  CAS  Google Scholar 

  11. Talamo Guevara M, McColley SA (2017) The safety of lumacaftor and ivacaftor for the treatment of cystic fibrosis. Expert Opin Drug Saf 16:1305–1311

    Article  CAS  Google Scholar 

  12. Rowe SM, Daines C, Ringshausen FC, Kerem E, Wilson J, Tullis E, Nair N, Simard C, Han L, Ingenito EP, McKee C, Lekstrom-Himes J, Davies JC (2017) Tezacaftor-Ivacaftor in residual-function heterozygotes with cystic fibrosis. N Engl J Med 377:2024–2035

    Article  CAS  Google Scholar 

  13. Keating D, Marigowda G, Burr L, Daines C, Mall MA, McKone EF, Ramsey BW, Rowe SM, Sass LA, Tullis E, McKee CM, Moskowitz SM, Robertson S, Savage J, Simard C, Van Goor F, Waltz D, Xuan F, Young T, Taylor-Cousar JL (2018) VX-445-Tezacaftor-Ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med 379:1612–1620

    Article  CAS  Google Scholar 

  14. Davies JC, Moskowitz SM, Brown C, Horsley A, Mall MA, McKone EF, Plant BJ, Prais D, Ramsey BW, Taylor-Cousar JL, Tullis E, Uluer A, McKee CM, Robertson S, Shilling RA, Simard C, Van Goor F, Waltz D, Xuan F, Young T, Rowe SM (2018) VX-659-Tezacaftor-Ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med 379:1599–1611

    Article  CAS  Google Scholar 

  15. Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM, de Winter-de Groot KM, Brandsma AM, de Jong NW, Bijvelds MJ, Scholte BJ, Nieuwenhuis EE, van den Brink S, Clevers H, van der Ent CK, Middendorp S, Beekman JM (2013) A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med 19:939–945

    Article  CAS  Google Scholar 

  16. Graeber SY, Hug MJ, Sommerburg O, Hirtz S, Hentschel J, Heinzmann A, Dopfer C, Schulz A, Mainz JG, Tummler B, Mall MA (2015) Intestinal current measurements detect activation of mutant CFTR in patients with cystic fibrosis with the G551D mutation treated with Ivacaftor. Am J Respir Crit Care Med 192:1252–1255

    Article  Google Scholar 

  17. Graeber SY, Dopfer C, Naehrlich L, Gyulumyan L, Scheuermann H, Hirtz S, Wege S, Mairbaurl H, Dorda M, Hyde R, Bagheri-Hanson A, Rueckes-Nilges C, Fischer S, Mall MA, Tummler B (2018) Effects of lumacaftor-Ivacaftor therapy on cystic fibrosis transmembrane conductance regulator function in Phe508del homozygous patients with cystic fibrosis. Am J Respir Crit Care Med 197:1433–1442

    Article  CAS  Google Scholar 

  18. Belessis Y, Dixon B, Hawkins G, Pereira J, Peat J, MacDonald R, Field P, Numa A, Morton J, Lui K, Jaffe A (2012) Early cystic fibrosis lung disease detected by bronchoalveolar lavage and lung clearance index. Am J Respir Crit Care Med 185:862–873

    Article  Google Scholar 

  19. Hoo AF, Thia LP, Nguyen TT, Bush A, Chudleigh J, Lum S, Ahmed D, Lynn IB, Carr SB, Chavasse RJ, Costeloe KL, Price J, Shankar A, Wallis C, Wyatt HA, Wade A, Stocks J (2012) Lung function is abnormal in 3‑month-old infants with cystic fibrosis diagnosed by newborn screening. Thorax 67:874–881

    Article  Google Scholar 

  20. Leutz-Schmidt P, Stahl M, Sommerburg O, Eichinger M, Puderbach MU, Schenk JP, Alrajab A, Triphan SMF, Kauczor HU, Mall MA, Wielputz MO (2018) Non-contrast enhanced magnetic resonance imaging detects mosaic signal intensity in early cystic fibrosis lung disease. Eur J Radiol 101:178–183

    Article  Google Scholar 

  21. Mall MA, Stahl M, Graeber SY, Sommerburg O, Kauczor HU, Wielputz MO (2016) Early detection and sensitive monitoring of CF lung disease: prospects of improved and safer imaging. Pediatr Pulmonol 51:S49–S60

    Article  Google Scholar 

  22. Ratjen F, Hug C, Marigowda G, Tian S, Huang X, Stanojevic S, Milla CE, Robinson PD, Waltz D, Davies JC (2017) Efficacy and safety of lumacaftor and ivacaftor in patients aged 6–11 years with cystic fibrosis homozygous for F508del-CFTR: a randomised, placebo-controlled phase 3 trial. Lancet Respir Med 5:557–567

    Article  CAS  Google Scholar 

  23. Stahl M, Wielputz MO, Graeber SY, Joachim C, Sommerburg O, Kauczor HU, Puderbach M, Eichinger M, Mall MA (2017) Comparison of lung clearance index and magnetic resonance imaging for assessment of lung disease in children with cystic fibrosis. Am J Respir Crit Care Med 195:349–359

    CAS  PubMed  Google Scholar 

  24. Stanojevic S, Davis SD, Retsch-Bogart G, Webster H, Davis M, Johnson RC, Jensen R, Pizarro ME, Kane M, Clem CC, Schornick L, Subbarao P, Ratjen FA (2017) Progression of lung disease in preschool patients with cystic fibrosis. Am J Respir Crit Care Med 195:1216–1225

    Article  Google Scholar 

  25. Subbarao P, Stanojevic S, Brown M, Jensen R, Rosenfeld M, Davis S, Brumback L, Gustafsson P, Ratjen F (2013) Lung clearance index as an outcome measure for clinical trials in young children with cystic fibrosis. A pilot study using inhaled hypertonic saline. Am J Respir Crit Care Med 188:456–460

    Article  Google Scholar 

  26. Wielpütz MO, Eichinger M, Biederer J, Wege S, Stahl M, Sommerburg O, Mall MA, Kauczor HU, Puderbach M (2016) Imaging of cystic fibrosis lung disease and clinical interpretation. Rofo 188:834–845

    Article  Google Scholar 

  27. Wielputz MO, Mall MA (2017) MRI accelerating progress in functional assessment of cystic fibrosis lung disease. J Cyst Fibros 16:165–167

    Article  Google Scholar 

  28. Wielpütz MO, Puderbach M, Kopp-Schneider A, Stahl M, Fritzsching E, Sommerburg O, Ley S, Sumkauskaite M, Biederer J, Kauczor HU, Eichinger M, Mall MA (2014) Magnetic resonance imaging detects changes in structure and perfusion, and response to therapy in early cystic fibrosis lung disease. Am J Respir Crit Care Med 189:956–965

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Eickmeier.

Ethics declarations

Interessenkonflikt

O. Eickmeier, S. Gräber, C. Smaczny, G. Rohde und M. Stahl geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

G. Rhode, Frankfurt

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eickmeier, O., Gräber, S., Smaczny, C. et al. Molekulare Medizin genetisch determinierter Erkrankungen am Beispiel der zystischen Fibrose . Pneumologe 17, 96–104 (2020). https://doi.org/10.1007/s10405-019-00295-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-019-00295-4

Schlüsselwörter

Keywords

Navigation