Skip to main content
Log in

Nanoparticle-tuned spreading behavior of nanofluid droplets on the solid substrate

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Nanofluids, which are the term for suspensions of nanometer-sized structures, have recently been extensively used in a rapid increasing number of applications. In this work, spreading behaviors of water-based nanofluid droplets were investigated via molecular dynamics simulation. Influencing factors such as nanoparticle volume fraction and surface wettability were discussed in details on the atomic scale. Our simulation results demonstrated that the dynamics spreading of nanofluids can be effectively regulated by adjusting these factors. Based on the scaling law \(R(t) \propto t^{1/n} ,\) we proposed a competitive mechanism analysis among surface tension, viscous force and disjoining pressure, which describes the power relationship between contact radius R and spreading time t. These findings indicate that the nanoparticle-tuned spreading behavior of nanofluid droplets can be extensively used for diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adao MH, De Ruijter M, Voue M et al (1999) Droplet spreading on heterogeneous substrates using molecular dynamics. Phys Rev E 59:746–750

    Article  Google Scholar 

  • Alava MJ, Dube M (2012) Droplet spreading and pinning on heterogeneous substrates. Phys Rev E 86:011607

    Article  Google Scholar 

  • Baby TT, Ramaprabhua S (2010) Investigation of thermal and electrical conductivity of graphene based nanofluids. J Appl Phys 108:124308

    Article  Google Scholar 

  • Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  Google Scholar 

  • Bonn D, Eggers J, Indekeu J et al (2009) Wetting and spreading. Rev Mod Phys 81:739–805

    Article  Google Scholar 

  • Chen HG, Bodmeier R (1990) Indomethacin polymeric nanosuspensions prepared by microfujidization. J Control Release 12:223–233

    Article  Google Scholar 

  • Chengara A, Nikolov AD, Wasan DT et al (2004) Spreading of nanofluids driven by the structural disjoining pressure gradient. J Colloid Interface Sci 280:192–201

    Article  Google Scholar 

  • Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and applications of non-Newtonian flows. American Society of Mechanical Engineers, New York, pp 99–105

  • Chon CH, Kihm KD, Lee SP et al (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87:153107

    Article  Google Scholar 

  • Coe JR, Godfery TB (1944) Viscosity of water. J Appl Phys 15:625

    Article  Google Scholar 

  • de Gennes PG (1985) Wetting—statics and dynamics. Rev Mod Phys 57:827–863

    Article  Google Scholar 

  • De Ruijter MJ, De Coninck J, Oshanin G (1999) Droplet spreading: partial wetting regime revisited. Langmuir 15:2209–2216

    Article  Google Scholar 

  • Du XS, Li QX, Chen Y et al (2007) Pair-hopping characteristic of lithium diffusive motion in li-doped beta-phase manganese phthalocyanine. J Phys Chem B 111:10064–10068

    Article  Google Scholar 

  • Ganguly S, Sikdar S, Basu S (2009) Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids. Powder Technol 196:326–330

    Article  Google Scholar 

  • Han J, Kim C (2012) Spreading of a suspension drop on a horizontal surface. Langmuir 28:2680–2689

    Article  Google Scholar 

  • Harkins WD, Feldman A (1922) Films the spreading of liquids and the spreading coefficient. J Am Chem Soc 44:2665–2685

    Article  Google Scholar 

  • Heine DR, Grest GS, Webb EB (2005) Surface wetting of liquid nanodroplets: droplet-size effects. Phys Rev Lett 95:107801

    Article  Google Scholar 

  • Hong TK, Yang HS, Choi CJ (2005) Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 97:064311

    Article  Google Scholar 

  • Huppert HE (1982) The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J Fluid Mech 121:43–58

    Article  Google Scholar 

  • Joanny JF, de Gennes PG (1986) Upward creep of a wetting fluid—a scaling analysis. J Phys 47:121–127

    Article  Google Scholar 

  • Kestin J, Sokolov M, Wakeham WA (1978) Viscosity of liquid water in range −8 C to 150 C. J Phys Chem 7:941–948

    Google Scholar 

  • Kole M, Dey TK (2010) Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant. J Phys D Appl Phys 43:315501

    Article  Google Scholar 

  • Kondiparty K, Nikolov A, Wu S et al (2011) Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure: statics analysis and experiments. Langmuir 27:3324–3335

    Article  Google Scholar 

  • Lee S, Choi SUS, Li S et al (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Trans 121:280–289

    Article  Google Scholar 

  • Lin JQ, Zhang HW, Chen Z et al (2011) Simulation study of aggregations of monolayer-protected gold nanoparticles in solvents. J Phys Chem C 115:18991–18998

    Article  Google Scholar 

  • Liu GL, Kim J, Lu Y et al (2006) Optofluidic control using photothermal nanoparticles. Nat Mater 5:27–32

    Article  Google Scholar 

  • Mchale G, Newton MI, Rowan SM et al (1995) The spreading of small viscous stripes of oil. J Phys D Appl Phys 28:1925–1929

    Article  Google Scholar 

  • Minea AA, Luciu RS (2012) Investigations on electrical conductivity of stabilized water based Al2O3 nanofluids. Microfluid Nanofluid 13:977–985

    Article  Google Scholar 

  • Nieminen JA, Abraham DB, Karttunen M et al (1992) Molecular-dynamics of a microscopic droplet on solid-surface. Phys Rev Lett 69:124–127

    Article  Google Scholar 

  • Oppenheim RC (1981) Solid colloidal drug delivery systems: nanoparticles. Int J Pharm 8:217–234

    Article  Google Scholar 

  • Oron A, Davis SH, Bankoff SG (1997) Long-scale evolution of thin liquid films. Rev Mod Phys 69:931–980

    Article  Google Scholar 

  • Pilkington GA, Briscoe WH (2012) Nanofluids mediating surface forces. Adv Colloid Interface 179:68–84

    Article  Google Scholar 

  • Plimpton SJ (1995) Fast parallel algorithms for short-ranged molecular dynamics. J Comput Phys 117:1–19

    Article  MATH  Google Scholar 

  • Prasher R, Song D, Wang JL et al (2006) Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett 89:133108

    Article  Google Scholar 

  • Ren WQ, Hu D, Weinan E (2010) Continuum models for the contact line problem. Phys Fluids 22:102103

    Article  Google Scholar 

  • Ritos K, Dongari N, Borg MK et al (2013) Dynamics of nanoscale droplets on moving surfaces. Langmuir 29:6936–6943

    Article  Google Scholar 

  • Shu XL, Tao P, Li XC et al (2013) Helium diffusion in tungsten: a molecular dynamics study. Nucl Instrum Methods Phys Res Sect B 303:84–86

    Article  Google Scholar 

  • Song FH, Li BQ, Liu C (2013) Molecular dynamics simulation of nanosized water droplet spreading in an electric field. Langmuir 29:4266–4274

    Article  Google Scholar 

  • Tanner LH (1979) Spreading of Silicone oil drops on horizontal surfaces. J Phys D Appl Phys 12:1473–1484

    Article  Google Scholar 

  • Thomas JA, Mcgaughey AJH (2008) Reassessing fast water transport through carbon nanotubes. Nano Lett 8:2788–2793

    Article  Google Scholar 

  • Timofeeva EV, Routbort JL, Singh D (2009) Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys 106:014304

    Article  Google Scholar 

  • Trokhymchuk A, Henderson D, Nikolov A et al (2001) A simple calculation of structural and depletion forces for fluids/suspensions confined in a film. Langmuir 17:4940–4947

    Article  Google Scholar 

  • Vafaei S, Borca-Tasciuc T, Podowski MZ et al (2006) Effect of nanoparticles on sessile droplet contact angle. Nanotechnology 17:2523–2527

    Article  Google Scholar 

  • Wang FC, Wu HA (2013) Enhanced oil droplet detachment from solid surfaces in charged nanoparticle suspensions. Soft Matter 9:7974–7980

    Article  Google Scholar 

  • Wasan DT, Nikolov AD (1999) In supramolecular structure in confined geometries. In Marne G, Warr G (eds) ACS Symp Ser vol 736, pp 40–53

  • Wasan DT, Nikolov AD (2003) Spreading of nanofluids on solids. Nature 423:156–159

    Article  Google Scholar 

  • Weon BM, Je JH (2013) Self-pinning by colloids confined at a contact line. Phys Rev Lett 110:028303

    Article  Google Scholar 

  • Xu H, Shirvanyants D, Beers K et al (2004) Molecular motion in a spreading precursor film. Phys Rev Lett 93:206103

    Article  Google Scholar 

  • Yuan QZ, Zhao YP (2010) Precursor film in dynamic wetting, electrowetting, and electro-elasto-capillarity. Phys Rev Lett 104:246101

    Article  Google Scholar 

  • Yuan QZ, Zhao YP (2012) Topology-dominated dynamic wetting of the precursor chain in a hydrophilic interior corner. Proc R Soc Math Phys 468:310–322

    Article  Google Scholar 

  • Yuan QZ, Zhao YP (2013a) Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface. J Fluid Mech 716:171–188

    Article  MATH  Google Scholar 

  • Yuan QZ, Zhao YP (2013b) Wetting on flexible hydrophilic pillar-arrays. Sci Rep 3:1944

  • Zhao YP (2012) Physical mechanics of surfaces and interfaces. Beijing, Science Press, pp 552–560

    Google Scholar 

Download references

Acknowledgments

This work was jointly supported by National Natural Science Foundation of China, Anhui Provincial Natural Science Foundation and the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to FengChao Wang or HengAn Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, F., Liu, H. et al. Nanoparticle-tuned spreading behavior of nanofluid droplets on the solid substrate. Microfluid Nanofluid 18, 111–120 (2015). https://doi.org/10.1007/s10404-014-1422-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1422-y

Keywords

Navigation