Skip to main content

Advertisement

Log in

Optofluidic SERS: synergizing photonics and microfluidics for chemical and biological analysis

  • Review Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Surface enhanced Raman spectroscopy (SERS) leverages the specificity of Raman scattering and the sensitivity provided by localized plasmonic effects for applications in chemical and biomolecular detection. However, nearly four decades after the first report of SERS, practical uses of the technique remain limited. Optofluidic SERS—the synergistic use of microfluidics to improve the performance of SERS—may finally lead to practical devices for chemical and biomolecular detection. In this review, we describe recent advances in optofluidic SERS microsystems that have been developed to improve the performance and applicability of SERS. These techniques include designs that improve the light–analyte interaction, that perform active or passive concentration of metal nanoparticles and/or analyte molecules, and that utilize microfluidic techniques to improve functionality. In addition, we present optofluidic SERS techniques that enable new applications that have not been possible before the advent of optofluidics. Finally, we project future advances in optofluidic SERS and present a vision for the disruptive technologies that will enable the translation of SERS from the research lab to practical uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackermann KR, Henkel T, Popp J (2007) Quantitative online detection of low-concentrated drugs via a SERS microfluidic system. ChemPhysChem 8:2665–2670

    Article  Google Scholar 

  • Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217

    Article  Google Scholar 

  • Arnold S, Keng D, Shopova SI et al (2009) Whispering Gallery Mode Carousel—a photonic mechanism for enhanced nanoparticle detection in biosensing. Opt Express 17:6230–6238

    Article  Google Scholar 

  • Baehr-Jones T, Hochberg M, Walker C, Scherer A (2005) High-Q optical resonators in silicon-on-insulator-based slot waveguides. Appl Phys Lett 86:081101

    Article  Google Scholar 

  • Bog U, Smith CLC, Lee MW et al (2008) High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures. Opt Lett 33:2206–2208

    Article  Google Scholar 

  • Cai M, Painter O, Vahala K (2000) Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys Rev Lett 85:74–77

    Article  Google Scholar 

  • Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540

    Article  Google Scholar 

  • Cecchini MP, Hong J, Lim C et al (2011) Ultrafast surface enhanced resonance Raman scattering detection in droplet-based microfluidic systems. Anal Chem 83:3076–3081

    Article  Google Scholar 

  • Cho H, Lee B, Liu GL et al (2009) Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration. Lab Chip 9:3360–3363

    Article  Google Scholar 

  • Choi I, Huh YS, Erickson D (2011) Size-selective concentration and label-free characterization of protein aggregates using a Raman active nanofluidic device. Lab Chip 11:632–638

    Article  Google Scholar 

  • Chou I-H, Benford M, Beier HT et al (2008) Nanofluidic biosensing for beta-amyloid detection using surface enhanced Raman spectroscopy. Nano Lett 8:1729–1735

    Article  Google Scholar 

  • Culha M, Stokes D, Allain LR, Vo-Dinh T (2003) Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics. Anal Chem 75:6196–6201

    Article  Google Scholar 

  • Driskell JD, Seto AG, Jones LP et al (2008) Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS). Biosens Bioelectron 24:923–928

    Article  Google Scholar 

  • Erickson D, Serey X, Chen Y-F, Mandal S (2011a) Nanomanipulation using near field photonics. Lab Chip 11:995–1009

    Article  Google Scholar 

  • Erickson D, Sinton D, Psaltis D (2011b) Optofluidics for energy applications. Nat Photonics 5:583–590

    Article  Google Scholar 

  • Escobedo C, Brolo AG, Gordon R, Sinton D (2010) Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. Anal Chem 82:10015–10020

    Article  Google Scholar 

  • Fabris L, Dante M, Braun G et al (2007) A heterogeneous PNA-based SERS method for DNA detection. J Am Chem Soc 129:6086–6087

    Article  Google Scholar 

  • Fainman Y, Lee L, Psaltis D, Yang C (2010) Optofluidics: fundamentals, devices, and applications. McGraw-Hill, New York

    Google Scholar 

  • Fan X, White IM (2011) Optofluidic microsystems for chemical and biological analysis. Nat Photonics 5:591–597

    Article  Google Scholar 

  • Faulds K, Smith WE, Graham D (2004) Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis. Anal Chem 76:412–417

    Article  Google Scholar 

  • Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  Google Scholar 

  • Fu C-C, Ossato G, Long M et al (2010) Bimetallic nanopetals for thousand-fold fluorescence enhancements. Appl Phys Lett 97:203101

    Article  Google Scholar 

  • Gorodetsky ML, Ilchenko VS (1999) Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J Opt Soc Am B 16:147–154

    Article  Google Scholar 

  • Grimes A, Breslauer DN, Long M et al (2008) Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns. Lab Chip 8:170–172

    Article  Google Scholar 

  • Grubisha DS, Lipert RJ, Park H-Y et al (2003) Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal Chem 75:5936–5943

    Article  Google Scholar 

  • Guo Y, Li H, Reddy K et al (2011) Optofluidic Fabry–Perot cavity biosensor with integrated flow-through micro-/nanochannels. Appl Phys Lett 98:041104

    Article  Google Scholar 

  • Guo Y, Khaing Oo MK, Reddy K, Fan X (2012) Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries. ACS Nano 6:381–388

    Article  Google Scholar 

  • Han XX, Zhao B, Ozaki Y (2009) Surface-enhanced Raman scattering for protein detection. Anal Bioanal Chem 394:1719–1727

    Article  Google Scholar 

  • Han B, Choi N, Kim KH et al (2011) Application of silver-coated magnetic microspheres to a SERS-based optofluidic sensor. J Physical Chemistry C 115:6290–6296

    Article  Google Scholar 

  • Hawkins AR, Schmidt H (2010) Handbook of Optofluidics. CRC Press, Boca Raton

    Book  Google Scholar 

  • Hossein-Zadeh M, Vahala KJ (2007) Free ultra-high-Q microtoroid: a tool for designing photonic devices. Opt Express 15:166–175

    Article  Google Scholar 

  • Huh YS, Erickson D (2010) Aptamer based surface enhanced Raman scattering detection of vasopressin using multilayer nanotube arrays. Biosens Bioelectron 25:1240–1243

    Article  Google Scholar 

  • Huh YS, Chung AJ, Cordovez B, Erickson D (2009a) Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells. Lab Chip 9:433–439

    Article  Google Scholar 

  • Huh YS, Chung AJ, Erickson D (2009b) Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis. Microfluid Nanofluid 6:285–297

    Article  Google Scholar 

  • Hwang H, Han D, Oh Y-J et al (2011) In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform. Lab Chip 11:2518–2525

    Article  Google Scholar 

  • Isola NR, Stokes DL, Vo-Dinh T (1998) Surface-enhanced Raman gene probe for HIV detection. Anal Chem 70:1352–1356

    Article  Google Scholar 

  • Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20

    Article  Google Scholar 

  • Khaing Oo MK, Han Y, Martini R, Sukhishvili S, Du H (2009) Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles. Opt Lett 34:968–970

    Article  Google Scholar 

  • Khaing Oo MK, Han Y, Kanka J et al (2010) Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy. Opt Lett 35:466–468

    Article  Google Scholar 

  • Khan MS, Fon D, Li X et al (2010) Biosurface engineering through ink jet printing. Colloids Surf B 75:441–447

    Article  Google Scholar 

  • Kim S, Zhang W, Cunningham BT (2008) Photonic crystals with SiO2–Ag “post-cap” nanostructure coatings for surface enhanced Raman spectroscopy. Appl Phys Lett 93:143112

    Article  Google Scholar 

  • Kim S, Zhang W, Cunningham BT (2010) Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy. Opt Express 18:4300–4309

    Article  Google Scholar 

  • Kneipp K, Wang Y, Kneipp H et al (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  Google Scholar 

  • Kneipp K, Kneipp H, Kartha V et al (1998) Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys Rev E 57:R6281–R6284

    Article  Google Scholar 

  • Kneipp K, Kneipp H, Itzkan I et al (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99:2957–2976

    Article  Google Scholar 

  • Kühn S, Measor P, Lunt EJ et al (2009) Loss-based optical trap for on-chip particle analysis. Lab Chip 9:2212–2216

    Article  Google Scholar 

  • Kühn S, Phillips BS, Lunt EJ et al (2010) Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip. Lab Chip 10:189–194

    Article  Google Scholar 

  • Lee SJ, Moskovits M (2011) Visualizing chromatographic separation of metal ions on a surface-enhanced Raman active medium. Nano Lett 11:145–150

    Article  Google Scholar 

  • Lee S, Choi J, Chen L et al (2007) Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor. Anal Chim Acta 590:139–144

    Article  Google Scholar 

  • Lee CH, Hankus ME, Tian L et al (2011) Highly sensitive SERS substrates based on filter paper loaded with plasmonic nanostructures. Anal Chem 83:8953–8958

    Article  Google Scholar 

  • Li X, Tian J, Garnier G, Shen W (2010) Fabrication of paper-based microfluidic sensors by printing. Colloids Surf B 76:564–570

    Article  Google Scholar 

  • Lin S, Schonbrun E, Crozier K (2010) Optical manipulation with planar silicon microring resonators. Nano Lett 10:2408–2411

    Article  Google Scholar 

  • Liu J, White IM, DeVoe DL (2011) Nanoparticle-functionalized porous polymer monolith detection elements for surface-enhanced Raman scattering. Anal Chem 83:2119–2124

    Article  Google Scholar 

  • Lowe AJ, Huh YS, Strickland AD et al (2010) Multiplex single nucleotide polymorphism genotyping utilizing ligase detection reaction coupled surface enhanced Raman spectroscopy. Anal Chem 82:5810–5814

    Article  Google Scholar 

  • Mahajan S, Richardson J, Brown T, Bartlett PN (2008) SERS-melting: a new method for discriminating mutations in DNA sequences. J Am Chem Soc 130:15589–15601

    Article  Google Scholar 

  • Mandal S, Erickson D (2008) Nanoscale optofluidic sensor arrays. Opt Express 16:1623–1631

    Article  Google Scholar 

  • Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10

    Article  Google Scholar 

  • Measor P, Seballos L, Yin D et al (2007) On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides. Appl Phys Lett 90:211107

    Article  Google Scholar 

  • Michaels AM, Nirmal M, Brus LE (1999) Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals. J Am Chem Soc 121:9932–9939

    Article  Google Scholar 

  • Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat Photonics 1:106–114

    Article  Google Scholar 

  • Moskovits M (1978) Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys 69:4159–4161

    Article  Google Scholar 

  • Moskovits M (1985) Surface enhanced spectroscopy. Rev Mod Phys 57:783–826

    Article  Google Scholar 

  • Nie S, Emory S (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  Google Scholar 

  • Park T, Lee S, Seong GH et al (2005) Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study. Lab Chip 5:437–442

    Article  Google Scholar 

  • Park S-M, Huh YS, Craighead HG, Erickson D (2009) A method for nanofluidic device prototyping using elastomeric collapse. Proc Nat Acad Sci 106:15549–15554

    Article  Google Scholar 

  • Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. Trends Anal Chem 28:925–942

    Article  Google Scholar 

  • Piorek BD, Lee SJ, Santiago JG et al (2007) Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules. Proc Nat Acad Sci 104:18898–18901

    Article  Google Scholar 

  • Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386

    Article  Google Scholar 

  • Qu L-L, Li D-W, Xue J-Q et al (2012) Batch fabrication of disposable screen printed SERS arrays. Lab Chip 12:876–881

    Article  Google Scholar 

  • Quang LX, Lim C, Seong GH et al (2008) A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis. Lab Chip 8:2214–2219

    Article  Google Scholar 

  • Schmidt H, Hawkins AR (2011) The photonic integration of non-solid media using optofluidics. Nat Photonics 5:598–604

    Article  Google Scholar 

  • Stacy AA, Van Duyne RP (1983) Surface enhanced Raman and resonance Raman spectroscopy in a non-aqueous electrochemical environment: Tris(2,2′-bipyridine)ruthenium(II) adsorbed on silver from acetonitrile. Chem Phys Lett 102:365–370

    Article  Google Scholar 

  • Strehle KR, Cialla D, Rösch P et al (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79:1542–1547

    Article  Google Scholar 

  • Sun Y, Shopova SI, Wu C-S et al (2010) Bioinspired optofluidic FRET lasers via DNA scaffolds. Proc Nat Acad Sci 107:16039–16042

    Article  Google Scholar 

  • Tong L, Righini M, Gonzalez MU et al (2009) Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. Lab Chip 9:193–195

    Article  Google Scholar 

  • Vo-Dinh T (2008) Nanobiosensing using plasmonic nanoprobes. IEEE J Sel Top Quantum Electron 14:198–205

    Article  Google Scholar 

  • Vollmer F, Arnold S (2008) Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods 5:591–596

    Article  Google Scholar 

  • Wabuyele MB, Vo-Dinh T (2005) Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes. Anal Chem 77:7810–7815

    Article  Google Scholar 

  • Walter A, März A, Schumacher W et al (2011) Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab Chip 11:1013–1021

    Article  Google Scholar 

  • Wang M, Jing N, Chou I-H et al (2007) An optofluidic device for surface enhanced Raman spectroscopy. Lab Chip 7:630–632

    Article  Google Scholar 

  • Wang G, Lim C, Chen L et al (2009a) Surface-enhanced Raman scattering in nanoliter droplets: towards high-sensitivity detection of mercury (II) ions. Anal Bioanal Chem 394:1827–1832

    Article  Google Scholar 

  • Wang M, Benford M, Jing N et al (2009b) Optofluidic device for ultra-sensitive detection of proteins using surface-enhanced Raman spectroscopy. Microfluid Nanofluid 6:411–417

    Article  MATH  Google Scholar 

  • White IM, Gohring J, Fan X (2007) SERS-based detection in an optofluidic ring resonator platform. Opt Express 15:17433–17442

    Article  Google Scholar 

  • Wilson R, Bowden SA, Parnell J, Cooper JM (2010) Signal enhancement of surface enhanced Raman scattering and surface enhanced resonance Raman scattering using in situ colloidal synthesis in microfluidics. Anal Chem 82:2119–2123

    Article  Google Scholar 

  • Yan H, Gu C, Yang C et al (2006) Hollow core photonic crystal fiber surface-enhanced Raman probe. Appl Phys Lett 89:204101

    Article  Google Scholar 

  • Yang X, Shi C, Wheeler D et al (2010) High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering. J Opt Soc Am A 27:977–984

    Article  Google Scholar 

  • Yanik AA, Huang M, Artar A et al (2010) Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl Phys Lett 96:021101

    Article  Google Scholar 

  • Yazdi SH, White IM (2012) A nanoporous optofluidic microsystem for highly sensitive and repeatable surface enhanced Raman spectroscopy detection. Biomicrofluidics 6:014105

    Article  Google Scholar 

  • Yea K-H, Lee S, Kyong JB et al (2005) Ultra-sensitive trace analysis of cyanide water pollutant in a PDMS microfluidic channel using surface-enhanced Raman spectroscopy. Analyst 130:1009–1011

    Article  Google Scholar 

  • Yu WW, White IM (2010) Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Anal Chem 82:9626–9630

    Article  Google Scholar 

  • Zhao Y, Zhang X-J, Ye J et al (2011) Metallo-dielectric photonic crystals for reproducible surface-enhanced Raman substrates. ACS Nano 5:3027–3033

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding support from the National Institute for Biomedical Imaging and Bioengineering (5K25EB006011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, I.M., Yazdi, S.H. & Yu, W.W. Optofluidic SERS: synergizing photonics and microfluidics for chemical and biological analysis. Microfluid Nanofluid 13, 205–216 (2012). https://doi.org/10.1007/s10404-012-0962-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-0962-2

Keywords

Navigation