Skip to main content
Log in

Droplet microfluidic preparation of au nanoparticles-coated chitosan microbeads for flow-through surface-enhanced Raman scattering detection

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

An integrated microfluidic device was fabricated to enable on-chip droplet forming, trapping, fusing, shrinking, reaction and producing functional microbeads for a flow-through single bead-based molecule detection. Dielectrophoresis (DEP) force was used to transport target polymer droplets into different predefined microwells, where the droplets were fused through electrocoalescence to form a new one with a desired diameter. In a continuous water loss process with water diffusion to oil phase, the polymer droplet was shrunken and solidified to form a polymer microbead. For a demonstration, Au nanoparticles-coated chitosan microbeads were in situ fabricated through droplet trapping, fusion and shrinking, followed by synthesis of Au nanoparticles on the microbead surface via a photoreduction process. The produced Au nanoparticle/chitosan microbead embedded in the microwell resulted in a highly sensitive, flow-through surface-enhanced Raman scattering (SERS) detection of Rhodamine 6G (R6G). This work successfully demonstrates an integrated droplet based lab-on-a chip and its application to fabricate an extremely high-throughput single bead based detection platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cooney CG, Chen CY, Emerling MR, Nadim A, Sterling JD (2006) Electrowetting droplet microfluidics on a single planar surface. Microfluid Nanofluid 2:435–446

    Article  Google Scholar 

  • Damean N, Olguin LF, Hollfelder F, Abell C, Huck WTS (2009) Simultaneous measurement of reactions in microdroplets filled by concentration gradients. Lab Chip 9:1707–1713

    Article  Google Scholar 

  • Hildebrandt P, Stockburger M (1984) Surface-enhanced resonance Raman-spectroscopy of Rhodamine-6G adsorbed on colloidal silver. J Phys Chem 88:5935–5944

    Article  Google Scholar 

  • Huebner A, Bratton D, Whyte G, Yang M, Demello AJ, Abell C, Hollfelder F (2009) Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Lab Chip 9:692–698

    Article  Google Scholar 

  • Jameela SR, Jayakrishnan A (1995) Glutaraldehyde cross-linked chitosan microspheres as a long-acting biodegradable drug-delivery vehicle—studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials 16:769–775

    Article  Google Scholar 

  • Kneipp K, Kneipp H, Kneipp J (2006) Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregatess—from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc Chem Res 39:443–450

    Article  Google Scholar 

  • Koster S, Angile FE, Duan H, Agresti JJ, Wintner A, Schmitz C, Rowat AC, Merten CA, Pisignano D, Griffiths AD, Weitz DA (2008) Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8:1110–1115

    Article  Google Scholar 

  • Kuo ZT, Hsieh WH (2009) Single-bead-based consecutive biochemical assays using a dielectrophoretic microfluidic platform. Sensors Actuators B 141:293–300

    Article  Google Scholar 

  • Lao KL, Wang JH, Lee GB (2009) A microfluidic platform for formation of double-emulsion droplets. Microfluid Nanofluid 7:709–719

    Article  Google Scholar 

  • LEE CY, LIN YH, LEE GB (2009) A droplet-based microfluidic system capable of droplet formation and manipulation. Microfluid Nanofluid 6:599–610

    Article  Google Scholar 

  • Lim CT, Zhang Y (2007) Bead-based microfluidic immunoassays: the next generation. Biosens Bioelectron 22:1197–1204

    Article  Google Scholar 

  • Liu WT, Zhu L, Qin QW, Zhang Q, Feng HH, Ang S (2005) Microfluidic device as a new platform for immunofluorescent detection of viruses. Lab Chip 5:1327–1330

    Article  Google Scholar 

  • Liu K, Ding HJ, Chen Y, Zhao XZ (2007) Droplet-based synthetic method using microflow focusing and droplet fusion. Microfluid Nanofluid 3:239–243

    Article  Google Scholar 

  • McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu HK, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40

    Article  Google Scholar 

  • Mohr S, Zhang YH, Macaskill A, Day PJR, Barber RW, Goddard NJ, Emerson DR, Fielden PR (2007) Numerical and experimental study of a droplet-based PCR chip. M icrofluid Nanofluid 3:611–621

    Article  Google Scholar 

  • Murshed SMS, Tan SH, Nguyen NT, Wong TN, Yobas L (2009) Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction. Microfluid Nanofluid 6:253–259

    Article  Google Scholar 

  • Nguyen NT, Ting TH, Yap YF, Wong TN, Chai JCK, Ong WL, Zhou J, Tan SH, Yobas L (2007) Thermally mediated droplet formation in microchannels. Appl Phys Lett 91:084102

    Google Scholar 

  • Plateau J (1849) Recherches expérimentales et théoriques sur les figures d’équilibre d’une mass liquide sans pesanteur, Mém. Acad Sci Bruxelles 23:1–155

    Google Scholar 

  • Pohl HA (1978) Dielectrophoresis. Cambridge University Press, Cambridge

  • Qiu T, Wu XL, Shen JC, Xia Y, Shen PN, Chu PK (2008) Silver fractal networks for surface-enhanced Raman scattering substrates. Appl Surf Sci 254:5399–5402

    Article  Google Scholar 

  • Radiom M, Chan WK, Yang C (2009) A study of capillary flow from a pendant droplet. Microfluid Nanofluid 7:697–707

    Article  Google Scholar 

  • Rayleigh L (1879) On the capillary phenomena of jets. Proc R Soc Lond 29:71–97

    Article  Google Scholar 

  • Russo R, Malinconico M, Santagata G (2007) Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromolecules 8:3193–3197

    Article  Google Scholar 

  • Sato K, Yamanaka M, Takahashi H, Tokeshi M, Kimura H, Kitamori T (2002) Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon-gamma. Electrophoresis 23:734–739

    Article  Google Scholar 

  • Shu X, Zhu KJ (2000) A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery. Int J Pharm 201:51–58

    Article  Google Scholar 

  • Song YJ, Hormes J, Kumar C (2008) Microfluidic synthesis of nanomaterials. Small 4:698–711

    Article  Google Scholar 

  • Ting TH, Yap YF, Nguyen NT, Wong TN, Chai JCK, Yobas L (2006) Thermally mediated breakup of drops in microchannels. Appl Phys Lett 89, 234101

    Google Scholar 

  • Wang SS, Jiao ZJ, Huang XY, Yang C, Nguyen NT (2009a) Acoustically induced bubbles in a microfluidic channel for mixing enhancement. Microfluid Nanofluid 6:847–852

    Article  Google Scholar 

  • Wang W, Yang C, Li CM (2009b) Efficient on-demand compound droplet formation: from microfluidics to microdroplets as miniaturized laboratories. Small 5:1149–1152

    Google Scholar 

  • Wang W, Yang C, Li CM (2009c) On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Lab Chip 9:1504–1506

    Article  Google Scholar 

  • Wang W, Yang C, Liu YS, Li CM (2010) On-demand droplet release for droplet-based microfluidic system. Lab Chip 10:559–562

    Google Scholar 

  • Wen JH, Yang XH, Wang KM, Tan WH, Zhou LJ, Zuo XB, Zhang H, Chen YQ (2007) One-dimensional microfluidic beads array for multiple mRNAs expression detection. Biosens Bioelectron 22:2759–2762

    Article  Google Scholar 

  • Weng CH, Huang CC, Yeh CS, Lei HY, Lee GB (2009) Synthesis of hollow, magnetic Fe/Ga-based oxide nanospheres using a bubble templating method in a microfluidic system. Microfluid Nanofluid 7:841–848

    Article  Google Scholar 

  • Wu MH, Pan WC (2010) Development of microfluidic alginate microbead generator tunable by pulsed airflow injection for the microencapsulation of cells. Microfluid Nanofluid. doi:10.1007/s10404-009-0522-6

  • Wu HW, Huang YC, Wu CL, Lee GB (2009) Exploitation of a microfluidic device capable of generating size-tunable droplets for gene delivery. Microfluid Nanofluid 7:45–56

    Article  Google Scholar 

  • Yang XH, Zhao X, Zuo XB, Wang KM, Wen JH, Zhang H (2009) Nucleic acids detection using cationic fluorescent polymer based on one-dimensional microfluidic beads array. Talanta 77:1027–1031

    Article  Google Scholar 

  • Yonezawa Y, Sato T, Kawabata I (1994) Photoinduced formation of cold metal-film from metal salt of chitosan. Chem Lett 355–358

  • Zhang H, Yang X, Wang K, Tan W, Zhou L, Zuo X, Wen J, Chen Y (2007) Detection of single-base mutations using 1-D microfluidic beads array. Electrophoresis 28:4668–4678

    Article  Google Scholar 

  • Zhang H, Yang XH, Wang KM, Tan WH, Li HM, Zuo XB, Wen HH (2008) On-chip oligonucleotide ligation assay using one-dimensional microfluidic beads array for the detection of low-abundant DNA point mutations. Biosens Bioelectron 23:945–951

    Article  Google Scholar 

  • Zheng B, Roach LS, Ismagilov RF (2003) Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J Am Chem Soc 125:11170–11171

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Ming Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPEG 734 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Yang, C., Cui, X.Q. et al. Droplet microfluidic preparation of au nanoparticles-coated chitosan microbeads for flow-through surface-enhanced Raman scattering detection. Microfluid Nanofluid 9, 1175–1183 (2010). https://doi.org/10.1007/s10404-010-0639-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0639-7

Keywords

Navigation