Skip to main content

Advertisement

Log in

Aging and myocardial strain

  • Special Feature: Review Article
  • Update on Reference Values for Echocardiography
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

Advanced age is widely recognized as a key risk factor for incident cardiovascular disease. The age-associated changes in cardiac properties alter the substrate on which cardiovascular disease is superimposed in various ways, and thus affect the development and manifestations of cardiovascular disease (CVD) in the elderly. However, it is still unclear whether age-related cardiac alteration is attributed to aging itself or whether it is secondary to other acquired cardiovascular risk factors. Understanding the association between aging and cardiac functional remodeling might provide insight into the pathogenesis of cardiovascular aging and may help inform possible preventive strategies for CVD in older individuals. Speckle-tracking echocardiography enables the objective and quantitative assessment of subtle myocardial alterations that are undetectable with conventional echocardiography, and has excellent feasibility and reproducibility. Left ventricular (LV) global longitudinal strain, a sensitive measure of LV systolic dysfunction, was found to be an independent risk factor for cardiovascular morbidity and mortality. More recently, deformation imaging has been employed to assess right ventricular (RV) and atrial performance, and impaired RV and atrial strain predict unfavorable outcomes in various clinical settings. This article reviews the association between aging and changes in myocardial strain values and describes future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shapiro MD, Maron DJ, Morris PB, et al. Preventive cardiology as a subspecialty of cardiovascular medicine: JACC council perspectives. J Am Coll Cardiol. 2019;74:1926–42.

    Article  PubMed  Google Scholar 

  2. Wong TC, Piehler KM, Kang IA, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J. 2014;35:657–64.

    Article  CAS  PubMed  Google Scholar 

  3. Bianco CM, Farjo PD, Ghaffar YA, et al. Myocardial mechanics in patients with normal LVEF and diastolic dysfunction. JACC Cardiovasc Imaging. 2020;13:258–71.

    Article  PubMed  Google Scholar 

  4. Marwick TH, Leano RL, Brown J, et al. Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc Imaging. 2009;2:80–4.

    Article  PubMed  Google Scholar 

  5. Nakanishi K, Daimon M, Yoshida Y, et al. Serum uric acid level and subclinical left ventricular dysfunction: a community-based cohort study. ESC Heart Fail. 2020;7:1031–8.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Hirose K, Nakanishi K, Daimon M, et al. Impact of insulin resistance on subclinical left ventricular dysfunction in normal weight and overweight/obese Japanese subjects in a general community. Cardiovasc Diabetol. 2021;20:22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Voigt JU, Pedrizzetti G, Lysyansky P, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiogr. 2015;28:183–93.

    Article  PubMed  Google Scholar 

  8. Badano LP, Kolias TJ, Muraru D, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2018;19:591–600.

    Article  PubMed  Google Scholar 

  9. Charisopoulou D, Banner NR, Demetrescu C, et al. Right atrial and ventricular echocardiographic strain analysis predicts requirement for right ventricular support after left ventricular assist device implantation. Eur Heart J Cardiovasc Imaging. 2019;20:199–208.

    Article  PubMed  Google Scholar 

  10. Nakanishi K, Daimon M, Yoshida Y, et al. Carotid intima-media thickness and subclinical left heart dysfunction in the general population. Atherosclerosis. 2020;305:42–9.

    Article  CAS  PubMed  Google Scholar 

  11. Sawada N, Nakanishi K, Daimon M, et al. Influence of visceral adiposity accumulation on adverse left and right ventricular mechanics in the community. Eur J Prev Cardiol. 2020;27:2006–15.

    Article  PubMed  Google Scholar 

  12. Yoshida Y, Nakanishi K, Daimon M, et al. Association of arterial stiffness with left atrial structure and phasic function: a community-based cohort study. J Hypertens. 2020;38:1140–8.

    Article  CAS  PubMed  Google Scholar 

  13. Nakanishi K, Daimon M, Yoshida Y, et al. Relation of Body Mass Index to adverse right ventricular mechanics. Am J Cardiol. 2021;144:137–42.

    Article  PubMed  Google Scholar 

  14. Otterstad JE, Froeland G, St John Sutton M, et al. Accuracy and reproducibility of biplane two-dimensional echocardiographic measurements of left ventricular dimensions and function. Eur Heart J. 1997;18:507–13.

  15. Ho SY. Anatomy and myoarchitecture of the left ventricular wall in normal and in disease. Eur J Echocardiogr. 2009;10:iii3–7.

  16. Hoit BD. Strain and strain rate echocardiography and coronary artery disease. Circ Cardiovasc Imaging. 2011;4:179–90.

    Article  PubMed  Google Scholar 

  17. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200.

    Article  PubMed  Google Scholar 

  18. Morris DA, Otani K, Bekfani T, et al. Multidirectional global left ventricular systolic function in normal subjects and patients with hypertension: multicenter evaluation. J Am Soc Echocardiogr. 2014;27:493–500.

    Article  PubMed  Google Scholar 

  19. Alcidi GM, Esposito R, Evola V, et al. Normal reference values of multilayer longitudinal strain according to age decades in a healthy population: a single-centre experience. Eur Heart J Cardiovasc Imaging. 2018;19:1390–6.

    PubMed  Google Scholar 

  20. Sugimoto T, Dulgheru R, Bernard A, et al. Echocardiographic reference ranges for normal left ventricular 2D strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2017;18:833–40.

    Article  PubMed  Google Scholar 

  21. Takigiku K, Takeuchi M, Izumi C, et al. Normal range of left ventricular 2-dimensional strain: Japanese Ultrasound Speckle Tracking of the Left Ventricle (JUSTICE) study. Circ J. 2012;76:2623–32.

    Article  PubMed  Google Scholar 

  22. Cheng S, Larson MG, McCabe EL, et al. Age- and sex-based reference limits and clinical correlates of myocardial strain and synchrony: the Framingham Heart Study. Circ Cardiovasc Imaging. 2013;6:692–9.

    Article  PubMed  Google Scholar 

  23. Yoshida Y, Nakanishi K, Daimon M, et al. Alteration of cardiac performance and Serum B-Type Natriuretic peptide level in healthy aging. J Am Coll Cardiol. 2019;74:1789–800.

    Article  CAS  PubMed  Google Scholar 

  24. Yingchoncharoen T, Agarwal S, Popovic ZB, et al. Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr. 2013;26:185–91.

    Article  PubMed  Google Scholar 

  25. D’Elia N, Caselli S, Kosmala W, et al. Normal global longitudinal strain: an individual patient meta-analysis. JACC Cardiovasc Imaging. 2020;13:167–9.

    Article  PubMed  Google Scholar 

  26. Obokata M, Nagata Y, Wu VC, et al. Direct comparison of cardiac magnetic resonance feature tracking and 2D/3D echocardiography speckle tracking for evaluation of global left ventricular strain. Eur Heart J Cardiovasc Imaging. 2016;17:525–32.

    Article  PubMed  Google Scholar 

  27. Sakurai D, Asanuma T, Masuda K, et al. New parameter derived from three-dimensional speckle-tracking echocardiography for the estimation of left ventricular filling pressure in nondilated hearts. J Am Soc Echocardiogr. 2017;30:522–31.

    Article  PubMed  Google Scholar 

  28. Kaku K, Takeuchi M, Tsang W, et al. Age-related normal range of left ventricular strain and torsion using three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2014;27:55–64.

    Article  PubMed  Google Scholar 

  29. Kleijn SA, Pandian NG, Thomas JD, et al. Normal reference values of left ventricular strain using three-dimensional speckle tracking echocardiography: results from a multicentre study. Eur Heart J Cardiovasc Imaging. 2015;16:410–6.

    Article  PubMed  Google Scholar 

  30. Bernard A, Addetia K, Dulgheru R, et al. 3D echocardiographic reference ranges for normal left ventricular volumes and strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2017;18:475–83.

    Article  PubMed  Google Scholar 

  31. Truong VT, Phan HT, Pham KNP, et al. Normal ranges of left ventricular strain by three-dimensional speckle-tracking echocardiography in adults: a systematic review and meta-analysis. J Am Soc Echocardiogr. 2019;32:1586–97.

    Article  PubMed  Google Scholar 

  32. Marcus KA, Janousek J, Barends ME, et al. Synchronicity of systolic deformation in healthy pediatric and young adult subjects: a two-dimensional strain echocardiography study. Am J Physiol Heart Circ Physiol. 2012;302:H196-205.

    Article  CAS  PubMed  Google Scholar 

  33. Sun JP, Lam YY, Wu CQ, et al. Effect of age and gender on left ventricular rotation and twist in a large group of normal adults—a multicenter study. Int J Cardiol. 2013;167:2215–21.

    Article  PubMed  Google Scholar 

  34. Menting ME, McGhie JS, Koopman LP, et al. Normal myocardial strain values using 2D speckle tracking echocardiography in healthy adults aged 20 to 72 years. Echocardiography. 2016;33:1665–75.

    Article  PubMed  Google Scholar 

  35. Melenovsky V, Hwang SJ, Lin G, et al. Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J. 2014;35:3452–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Mohammed SF, Hussain I, AbouEzzeddine OF, et al. Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation. 2014;130:2310–20.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Hamada-Harimura Y, Seo Y, Ishizu T, et al. Incremental prognostic value of right ventricular strain in patients with acute decompensated heart failure. Circ Cardiovasc Imaging. 2018;11:e007249.

  38. Di Salvo TG, Mathier M, Semigran MJ, et al. Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol. 1995;25:1143–53.

    Article  PubMed  Google Scholar 

  39. Borlaug BA, Kane GC, Melenovsky V, et al. Abnormal right ventricular-pulmonary artery coupling with exercise in heart failure with preserved ejection fraction. Eur Heart J. 2016;37:3293–302.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Guazzi M, Dixon D, Labate V, et al. RV contractile function and its coupling to pulmonary circulation in heart failure with preserved ejection fraction: stratification of clinical phenotypes and outcomes. JACC Cardiovasc Imaging. 2017;10:1211–21.

    Article  PubMed  Google Scholar 

  41. Kusunose K, Seno H, Yamada H, et al. Right ventricular function and beneficial effects of cardiac rehabilitation in patients with systolic chronic heart failure. Can J Cardiol. 2018;34:1307–15.

    Article  PubMed  Google Scholar 

  42. Nochioka K, Querejeta Roca G, Claggett B, et al. Right ventricular function, right ventricular-pulmonary artery coupling, and heart failure risk in 4 US communities: the atherosclerosis risk in communities (ARIC) study. JAMA Cardiol. 2018;3:939–48.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Focardi M, Cameli M, Carbone SF, et al. Traditional and innovative echocardiographic parameters for the analysis of right ventricular performance in comparison with cardiac magnetic resonance. Eur Heart J Cardiovasc Imaging. 2015;16:47–52.

    Article  PubMed  Google Scholar 

  44. Morris DA, Krisper M, Nakatani S, et al. Normal range and usefulness of right ventricular systolic strain to detect subtle right ventricular systolic abnormalities in patients with heart failure: a multicentre study. Eur Heart J Cardiovasc Imaging. 2017;18:212–23.

    Article  PubMed  Google Scholar 

  45. Muraru D, Onciul S, Peluso D, et al. Sex- and method-specific reference values for right ventricular strain by 2-dimensional speckle-tracking echocardiography. Circ Cardiovasc Imaging. 2016;9:e003866.

  46. Addetia K, Takeuchi M, Maffessanti F, et al. Simultaneous longitudinal strain in all 4 cardiac chambers: a novel method for comprehensive functional assessment of the heart. Circ Cardiovasc Imaging. 2016;9:e003895.

  47. Olivetti G, Melissari M, Capasso JM, et al. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res. 1991;68:1560–8.

  48. Li Y, Zhang L, Gao Y, et al. Comprehensive assessment of right ventricular function by three-dimensional speckle-tracking echocardiography: comparisons with cardiac magnetic resonance imaging. J Am Soc Echocardiogr. 2021;34:472–82.

    Article  PubMed  Google Scholar 

  49. Brecht A, Oertelt-Prigione S, Seeland U, et al. Left atrial function in preclinical diastolic dysfunction: two-dimensional speckle-tracking echocardiography-derived results from the BEFRI Trial. J Am Soc Echocardiogr. 2016;29:750–8.

    Article  PubMed  Google Scholar 

  50. Singh A, Addetia K, Maffessanti F, et al. LA strain for categorization of LV diastolic dysfunction. JACC Cardiovasc Imaging. 2017;10:735–43.

    Article  PubMed  Google Scholar 

  51. Morris DA, Belyavskiy E, Aravind-Kumar R, et al. Potential usefulness and clinical relevance of adding left atrial strain to left atrial volume index in the detection of left ventricular diastolic dysfunction. JACC Cardiovasc Imaging. 2018;11:1405–15.

    Article  PubMed  Google Scholar 

  52. Nakanishi K, Daimon M, Yoshida Y, et al. Subclinical hypothyroidism as an independent determinant of left atrial dysfunction in the general population. J Clin Endocrinol Metab. 2021;106:e1859–67.

    Article  PubMed  Google Scholar 

  53. Potter EL, Ramkumar S, Kawakami H, et al. Association of asymptomatic diastolic dysfunction assessed by left atrial strain with incident heart failure. JACC Cardiovasc Imaging. 2020;13:2316–26.

    Article  PubMed  Google Scholar 

  54. Morris DA, Parwani A, Huemer M, et al. Clinical significance of the assessment of the systolic and diastolic myocardial function of the left atrium in patients with paroxysmal atrial fibrillation and low CHADS(2) index treated with catheter ablation therapy. Am J Cardiol. 2013;111:1002–11.

    Article  PubMed  Google Scholar 

  55. Patel RB, Delaney JA, Hu M, et al. Characterization of cardiac mechanics and incident atrial fibrillation in participants of the Cardiovascular Health Study. JCI Insight. 2020;5:e141656.

  56. Sun JP, Yang Y, Guo R, et al. Left atrial regional phasic strain, strain rate and velocity by speckle-tracking echocardiography: normal values and effects of aging in a large group of normal subjects. Int J Cardiol. 2013;168:3473–9.

    Article  PubMed  Google Scholar 

  57. Morris DA, Takeuchi M, Krisper M, et al. Normal values and clinical relevance of left atrial myocardial function analysed by speckle-tracking echocardiography: multicentre study. Eur Heart J Cardiovasc Imaging. 2015;16:364–72.

    Article  PubMed  Google Scholar 

  58. Liao JN, Chao TF, Kuo JY, et al. Age, sex, and blood pressure-related influences on reference values of left atrial deformation and mechanics from a large-scale Asian Population. Circ Cardiovasc Imaging. 2017;10:e006077.

  59. Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–4.

    Article  CAS  PubMed  Google Scholar 

  60. Burstein B, Libby E, Calderone A, Nattel S. Differential behaviors of atrial versus ventricular fibroblasts: a potential role for platelet-derived growth factor in atrial-ventricular remodeling differences. Circulation. 2008;117:1630–41.

    Article  PubMed  Google Scholar 

  61. Hanna N, Cardin S, Leung TK, Nattel S. Differences in atrial versus ventricular remodeling in dogs with ventricular tachypacing-induced congestive heart failure. Cardiovasc Res. 2004;63:236–44.

    Article  CAS  PubMed  Google Scholar 

  62. Pathan F, D’Elia N, Nolan MT, et al. Normal ranges of left atrial strain by speckle-tracking echocardiography: a systematic review and meta-analysis. J Am Soc Echocardiogr. 2017;30:59–70.

    Article  PubMed  Google Scholar 

  63. Sallach JA, Tang WH, Borowski AG, et al. Right atrial volume index in chronic systolic heart failure and prognosis. JACC Cardiovasc Imaging. 2009;2:527–34.

    Article  PubMed  Google Scholar 

  64. Cioffi G, de Simone G, Mureddu G, et al. Right atrial size and function in patients with pulmonary hypertension associated with disorders of respiratory system or hypoxemia. Eur J Echocardiogr. 2007;8:322–31.

    Article  PubMed  Google Scholar 

  65. Peluso D, Badano LP, Muraru D, et al. Right atrial size and function assessed with three-dimensional and speckle-tracking echocardiography in 200 healthy volunteers. Eur Heart J Cardiovasc Imaging. 2013;14:1106–14.

    Article  PubMed  Google Scholar 

  66. Soulat-Dufour L, Addetia K, Miyoshi T, et al. Normal values of right atrial size and function according to age, sex, and ethnicity: results of the world alliance societies of echocardiography study. J Am Soc Echocardiogr. 2021;34:286–300.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koki Nakanishi.

Ethics declarations

Conflict of interest

The authors report no disclosures pertinent to the content of the manuscript. The authors declare that there are no conflicts of interest.

Ethical statements

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakanishi, K., Daimon, M. Aging and myocardial strain. J Med Ultrasonics 49, 53–60 (2022). https://doi.org/10.1007/s10396-021-01115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10396-021-01115-0

Keywords

Navigation