Skip to main content

Advertisement

Log in

Mapping Risk of Nipah Virus Transmission from Bats to Humans in Thailand

  • Original Contribution
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

Nipah virus (NiV) is a zoonotic virus that can pose a serious threat to human and livestock health. Old-world fruit bats (Pteropus spp.) are the natural reservoir hosts for NiV, and Pteropus lylei, Lyle’s flying fox, is an important host of NiV in mainland Southeast Asia. NiV can be transmitted from bats to humans directly via bat-contaminated foods (i.e., date palm sap or fruit) or indirectly via livestock or other intermediate animal hosts. Here we construct risk maps for NiV spillover and transmission by combining ecological niche models for the P. lylei bat reservoir with other spatial data related to direct or indirect NiV transmission (livestock density, foodborne sources including fruit production, and human population). We predict the current and future (2050 and 2070) distribution of P. lylei across Thailand, Cambodia, and Vietnam. Our best-fit model predicted that central and western regions of Thailand and small areas in Cambodia are currently the most suitable habitats for P. lylei. However, due to climate change, the species range is predicted to expand to include lower northern, northeastern, eastern, and upper southern Thailand and almost all of Cambodia and lower southern Vietnam. This expansion will create additional risk areas for human infection from P. lylei in Thailand. Our combined predictive risk maps showed that central Thailand, inhabited by 2.3 million people, is considered highly suitable for the zoonotic transmission of NiV from P. lylei. These current and future NiV transmission risk maps can be used to prioritize sites for active virus surveillance and developing awareness and prevention programs to reduce the risk of NiV spillover and spread in Thailand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ambat AS, Zubair SM, Prasad N, Pundir P, Rajwar E, Patil DS, Mangad P (2019) Nipah virus: a review on epidemiological characteristics and outbreaks to inform public health decision making. Journal of Infection and Public Health 12:634–639

    PubMed  Google Scholar 

  • Ang B, Lim T, Wang L (2018) Nipah virus infection. Journal of Clinical Microbiology 56:1875–1817

    Google Scholar 

  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222:1810–1819

    Google Scholar 

  • Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling 275:73–77

    Google Scholar 

  • Bumrungsri S, Suyanto A, Francis C (2008) Pteropus lylei IUCN Red List of 525 Threatened Species Version 2014.1. Available: www.iucnredlist.org [accessed March 16, 2020]

  • CDC (1999) Outbreak of Hendra-Like Virus — Malaysia and Singapore, 1998–1999. Morbidity and Mortality Weekly Report 48(13):265–269

    Google Scholar 

  • Chadha MS, Comer JA, Lowe L, Rota PA, Rollin PE, Bellini WJ, Ksiazek TG, Mishra AC (2006) Nipah virus-associated encephalitis outbreak, Siliguri. India. Emerging Infectious Diseases 12(2):235–240

    PubMed  Google Scholar 

  • Chaiyes A, Duengkae P, Wacharapluesadee S, Pongpattananurak N, Olival KJ, Hemachudha T (2017) Assessing the distribution, roosting site characteristics, and population of Pteropus lylei in Thailand. Raffles Bulletin of Zoology 65:670–680

    Google Scholar 

  • Chaiyes A, Escobar LE, Willcox EV, Duengkae P, Suksavate W, Watcharaanantapong P, Pongpattananurak P, Wacharapluesadee S, Hemachudha T (2020) An assessment of the niche centroid hypothesis: Pteropus lylei (Chiroptera). Ecosphere; https://doi.org/10.1002/ecs2.3134[OnlineMay30,2020]

    Article  Google Scholar 

  • Chattu VK, Kumar R, Kumary S, Kajal F, David JK (2018) Nipah virus epidemic in southern India and emphasizing “One Health” approach to ensure global health security. Journal of Family Medicine and Primary Care 7(2):275–283

    PubMed  PubMed Central  Google Scholar 

  • Ching PK (2014) de los Reyes VC, Sucaldito MN, Tayag E, Columna-Vingno AB, Malbas FF Jr, Bolo GC Jr, Sejvar JJ, Eagles D, Playford G, Dueger E, Kaku Y, Morikawa S, Kuroda M, Marsh GA, McCullough S, Foxwell AR (2015) Outbreak of henipavirus infection, Philippines. Emerging Infectious Diseases 21(2):328–331

    Google Scholar 

  • Choden K, Ravon S, Epstein JH, Hoem T, Furey N, Gely M, Jolivot A, Hul V, Neung C, Tran A, Cappelle J (2019) Pteropus lylei primarily forages in residential areas in Kandal, Cambodia. Ecology and Evolution 9:4181–4191

    PubMed  PubMed Central  Google Scholar 

  • Chowdhury S, Khan SU, Crameri G, Epstein JH, Broder CC, Islam A, Peel AJ, Barr J, Daszak P, Wang LF, Luby SP (2014) Serological Evidence of Henipavirus Exposure in Cattle, Goats and Pigs in Bangladesh. PLOS Neglected Tropical Diseases 8(11):e3302. https://doi.org/10.1371/journal.pntd.0003302[OnlineNovember20,2014]

    Article  PubMed  PubMed Central  Google Scholar 

  • Chua KB (2003) Nipah virus outbreak in Malaysia. Journal of Clinical Virology 26:265–275

    PubMed  Google Scholar 

  • Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, Zaki SR, Paul G, Lam SK, Tan CT (1999) Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. The Lancet 354:1257–1259

    CAS  Google Scholar 

  • Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH, Chua BH, Chan YP, Lim ME, Lam SK (2002) Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes and Infection 4:145–151

    PubMed  Google Scholar 

  • Cobos ME, Peterson AT, Barve N, Osorio-Olvera L (2019) kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 7:e6281. https://doi.org/10.7717/peerj.6281[OnlineFebruary6,2019]

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper JC, Soberón J (2018) Creating individual accessible area hypotheses improves stacked species distribution model performance. Global Ecology and Biogeography 27:156–165

    Google Scholar 

  • Daszak P, Zambrana-Torrelio C, Bogich TL, Fernandez M, Epstein JH, Murray KA, Hamilton H (2013) Interdisciplinary approaches to understanding disease emergence: The past, present, and future drivers of Nipah virus emergence. Proceedings of the National Academy of Sciences 110:3681–3688

    CAS  Google Scholar 

  • DeBuysscher BL, de Wit E, Munster VJ, Scott D, Feldmann H, Prescott J (2013) Comparison of the pathogenicity of Nipah virus isolates from Bangladesh and Malaysia in the Syrian hamster. PLoS Neglected Tropical Diseases 7(1):e2024; DOI: https://doi.org/10.1371/journal.pntd.0002024 [Online Jan 17, 2013]

  • Deka MA, Morshed N (2018) Mapping disease transmission risk of Nipah virus in South and Southeast Asia. Tropical Medicine and Infectious Disease 3(2):57; DOI: https://doi.org/10.3390/tropicalmed3020057 [Online May 30, 2018]

  • Duengkae P, Srikhunmuang P, Chaiyes A, Suksavate W, Pongpattananurak N, Wacharapluesadee S, Hemachudha T (2019) Patch metrics of roosting site selection by Lyle’s flying fox (Pteropus lylei Andersen, 1908) in a human-dominated landscape in Thailand. Folia Oecologica 46:63–73

    Google Scholar 

  • Ersts PJ (2021) Geographic Distance Matrix Generator (version 1.2.3). American Museum of Natural History. Center for Biodiversity and Conservation, Available: http://biodiversityinformatics.amnh.org/open source/gdmg [accessed October 12, 2021]

  • Escobar LE, Lira-Noriega A, Medina-Vogel G, Peterson AT (2014) Potential for spread of White-nose fungus (Pseudogymnoascus destructans) in the Americas: Using Maxent and NicheA to assure strict model transference. Geospatial Health 11:221–229

    Google Scholar 

  • Fick SE, Hijmans RJ (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. https://doi.org/10.1002/joc.5086[OnlineMay15,2017]

    Article  Google Scholar 

  • Field H, Young P, Yob JM, Mills J, Hall L, Mackenzie J (2001) The natural history of Hendra and Nipah viruses. Microbes and Infection 3:307–314

    CAS  PubMed  Google Scholar 

  • Fogarty R, Halpin K, Hyatt AD, Daszak P, Mungall BA (2008) Henipavirus susceptibility to environmental variables. Virus Research 132(1–2):140–144

    CAS  PubMed  Google Scholar 

  • Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PloS One 9(5):e97122. https://doi.org/10.1371/journal.pone.0097122[OnlineMay12,2014]

    Article  PubMed  PubMed Central  Google Scholar 

  • Giles JR, Eby P, Parry H, Peel AJ, Plowright RK, Westcott DA, McCallum H (2018) Environmental drivers of spatiotemporal foraging intensity in fruit bats and implications for Hendra virus ecology. Scientific Reports 8:9555. https://doi.org/10.1038/s41598-018-27859-3[OnlineJune22,2018]

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurley ES, Montgomery JM, Hossain MJ, Islam MR, Molla MA, Shamsuzzaman SM (2007) Risk of nosocomial transmission of Nipah virus in a Bangladesh hospital. Infection Control and Hospital Epidemiology 28:740–742

    PubMed  Google Scholar 

  • Hahn MB, Gurley ES, Epstein JH, Islam MS, Patz JA, Daszak P, Luby SP (2014) The role of landscape composition and configuration on Pteropus giganteus roosting ecology and Nipah virus spillover risk in Bangladesh. The American Journal of Tropical Medicine and Hygiene 90(2):247–255

    PubMed  PubMed Central  Google Scholar 

  • Hauser N, Gushiken AC, Narayanan S, Kottilil S, Chua JV (2021) Evolution of Nipah virus infection: past, present, and future considerations. Tropical Medicine and Infectious Disease 6(1):24; DOI:https://doi.org/10.3390/tropicalmed6010024. [Online February 14,2021]

  • Hengjan Y, Sae-Koo N, Phichitrasilp T, Ohmori Y, Fujinami H, Hondo E (2018) Seasonal variation in the number of deaths in Pteropus lylei at Wat Pho Bang Khla temple, Thailand. The Journal of Veterinary Medical Science 80(8):1364–1367

    PubMed  PubMed Central  Google Scholar 

  • Hsu VP, Hossain MJ, Parashar UD, Ali MM, Ksiazek TG, Kuzmin IV, Niezgoda M, Rupprecht CE, Bresee J, Breiman RF (2004) Nipah virus encephalitis reemergence, Bangladesh. Emerging Infectious Diseases 10(12):2082–2087

    PubMed  PubMed Central  Google Scholar 

  • Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika 76:297–307

    Google Scholar 

  • International Trade Centre (2020) Country Profile Thailand. Available: http://www.intracen.org/ exporters/organic-products/country-focus/Country-Profile-Thailand/ [accessed April 9, 2020]

  • IUCN (2021) Pteropus Lylei. IUCN Red List of Threatened Species. Available: www.iucnredlist.org. [accessed February 3, 2021]

  • Jenks GF (1967) The data model concept in statistical mapping. International Yearbook of Cartography 7:186–190

    Google Scholar 

  • Loh EH, Zambrana-Torrelio C, Olival KJ, Bogich TL, Johnson CK, Mazet JAK, Karesh W, Daszak P (2015) Targeting Transmission Pathways for Emerging Zoonotic Disease Surveillance and Control. Vector-Borne and Zoonotic Diseases 15(7):432–437

    PubMed  PubMed Central  Google Scholar 

  • Luby SP, Rahman M, Hossain J, Blum LS, Husain MM, Gurley E (2006) Foodborne transmission of Nipah virus, Bangladesh. Emerging Infectious Diseases 12(12):1888–1894

    PubMed  PubMed Central  Google Scholar 

  • Luby SP, Gurley ES, Hossain MJ (2009a) Transmission of Human Infection with Nipah Virus. Clinical Infectious Diseases 49(11):1743–1748

    PubMed  Google Scholar 

  • Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, Khan SU, Homaira N, Rota PA, Rollin PE, Comer JA, Kenah E, Ksiazek TG, Rahman M (2009b) Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007. Emerging Infectious Diseases 15(8):1229–1235

    PubMed  PubMed Central  Google Scholar 

  • Martin GA, Yañez-Arenas C, Roberts BJ, Chen C, Plowright RK, Webb RJ, Skerratt LF (2016) Climatic suitability influences species specific abundance patterns of Australian flying foxes and risk of Hendra virus spillover. One Health 2:115–121

    PubMed  PubMed Central  Google Scholar 

  • McSweeney CF, Jones RG, Lee RW, Rowell DP (2015) Selecting CMIP5 GCMs for downscaling over multiple regions. Climate Dynamics 44:3237–3260

    Google Scholar 

  • Mohd Nor MN, Gan CH, Ong BL (2000) Nipah virus infection of pigs in peninsular Malaysia. Revue Scientifique Et Technique 19(1):160–165

    CAS  PubMed  Google Scholar 

  • Ostfeld RS, Glass GE, Keesing F (2005) Spatial epidemiology: an emerging (or re-emerging) discipline. Trends in Ecology and Evolution 20(6):328–336. https://doi.org/10.1016/j.tree.2005.03.009.PMID:16701389[OnlineMarch25,2005]

    Article  PubMed  Google Scholar 

  • Owens HL, Campbell LP, Dornak LL, Saupe EE, Barve N, Soberón J, Ingenloff K, Lira-Noriega A, Hensz CM, Myers CE, Peterson AT (2013) Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling 263:10–18

    Google Scholar 

  • Peterson AT (2006) Ecological niche modelling and understanding the geography of disease transmission. Veterinaria Italiana 43(3):393–400

    Google Scholar 

  • Peterson AT (2014) Mapping disease transmission risk. Baltimore: Johns Hopkins University Press

    Google Scholar 

  • Peterson AT (2015) Mapping risk of Nipah virus transmission across Asia and across Bangladesh. Asia Pacific Journal of Public Health 27(2):824–832

    Google Scholar 

  • Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling 213:63–72

    Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton: Princeton University Press

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231–259

    Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2018) Maxent software for modeling species niches and distributions (Version 3.4.1) Available: http://biodiversityinformatics.amnh.org/open_source/maxent/ [accessed August 5, 2018]

  • Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, Lloyd-Smith JO (2017) Pathways to zoonotic spillover. Nature Reviews Microbiology 15:502–510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poo-Muñoz DA, Escobar LE, Peterson AT, Astorga F, Organ JF, Medina-Vogel G (2014) Galictis cuja (Mammalia): An update of current knowledge and geographic distribution. Iheringia, Série Zoologia 104:341–346

    Google Scholar 

  • R Core Team (2018) R: a language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing

    Google Scholar 

  • Ravon S, Furey NM, Hul V, Cappelle J (2014) A rapid assessment of flying fox (Pteropus spp.) colonies in Cambodia. Cambodian Journal of Natural History 1:14–18

    Google Scholar 

  • Reynes J, Counor D, Ong S, Faure C, Seng V, Molia S, Walston J, Georges-Courbot MC, Deubel V, Sarthou J (2005) Nipah virus in Lyle’s flying foxes, Cambodia. Emerging Infectious Diseases 11(7):1042–1047

    PubMed  PubMed Central  Google Scholar 

  • Rota PA, Lo MK (2012) Molecular Virology of the Henipaviruses. In: Lee B, Rota P (eds) Henipavirus: Current Topics in Microbiology and Immunology Berlin, Heidelberg: Springer Press, pp 41–58

    Google Scholar 

  • Sharma V, Kaushik S, Kumar R, Yadav JP, Kaushik S (2019) Emerging trends of Nipah virus: a review. Reviews in medical virology 29:e2010; DOI:https://doi.org/10.1002/rmv.2010 [Online September 24,2018]

  • Skowron K, Justyna BK, Katarzyna GB, Natalia WK, Maciej Z, Zuzanna B, Eugenia GK (2022) Nipah Virus-Another Threat From the World of Zoonotic Viruses. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2021.811157[OnlineJanuary22,2022]

    Article  PubMed  PubMed Central  Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2:1–10

    Google Scholar 

  • Thanapongtharm W, Linard C, Wiriyarat W, Chinsorn P, Kanchanasaka B, Xiao X, Biradar C, Wallace RG, Gilbert M (2015) Spatial characterization of colonies of the flying fox bat, a carrier of Nipah virus in Thailand. BMC Veterinary Research 11:81–94

    PubMed  PubMed Central  Google Scholar 

  • Thirumalai K, DiNezio P, Okumura Y, Deser C (2017) Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nature Communication 8:15531, https://doi.org/10.1038/ncomms15531

  • Wacharapluesadee S, Lumlertdacha B, Boongird K, Wanghongsa S, Chanhome L, Rollin P, Stockton P, Rupprecht CE, Ksiazek TG, Hemachudha T (2005) Bat Nipah virus, Thailand. Emerging Infectious Diseases 11:1949–1951

    PubMed  PubMed Central  Google Scholar 

  • Wacharapluesadee S, Boongird K, Wanghongsa S, Ratanasetyuth N, Supavonwong P, Saengsen D, Gongal GN, Hemachudha T (2010) A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: evidence for seasonal preference in disease transmission. Vector Borne Zoonotic Diseases 10:183–190

    PubMed  Google Scholar 

  • Wacharapluesadee S, Ngamprasertwong T, Kaewpom T, Kattong P, Rodpan A, Wanghongsa S, Hemachudha T (2013) Genetic characterization of Nipah virus from Thai fruit bats (Pteropus lylei). Asian Biomedicine 7:813–819

    Google Scholar 

  • Wacharapluesadee S, Samseeneam P, Phermpool M, Kaewpom T, Rodpan A, Maneeorn P, Srongmongkol P, Kanchanasaka B, Hemachudha T (2016) Molecular characterization of Nipah virus from Pteropus hypomelanus in Southern Thailand. Virology Journal 13:53; DOI: https://doi.org/10.1186/s12985-016-0510-x [Online March 25, 2016]

  • Wacharapluesadee S, Ghai S, Duengkae P, Manee-Orn P, Thanapongtharm W, Saraya AW, Yingsakmongkon S, Joyjinda Y, Suradhat S, Ampoot W, Nuansrichay B, Kaewpom T, Tantilertcharoen R, Rodpan A, Wongsathapornchai K, Ponpinit T, Buathong R, Bunprakob S, Damrongwatanapokin S, Ruchiseesarod C, Petcharat S, Kalpravidh W, Olival KJ, Stokes MM, Hemachudha T (2021) Two decades of one health surveillance of Nipah virus in Thailand. One Health Outlook. 5;3(1):12;DOI: https://doi.org/10.1186/s42522-021-00044-9 [Online July 5, 2021]

  • Walsh MG (2015) Mapping the risk of Nipah virus spillover into human populations in South and Southeast Asia. Transactions of the Royal Society of Tropical Medicine & Hygiene 109:563–571

    Google Scholar 

  • Weber N, Duengkae P, Fahr J, Dechmann DKN, Phengsakul P, Khumbucha W, Siriaroonrat B, Wacharapluesadee S, Maneeorn P, WikelskiNewman MS (2015) High-resolution GPS tracking of Lyle’s flying fox between temples and orchards in central Thailand. The Journal of Wildlife Management 79(6):957–968

    Google Scholar 

  • Welbergen JA, Klose SM, Markus N, Eby P (2008) Climate change and the effects of temperature extremes on Australian flying-foxes. Proceedings of the Royal Society B. 275:419–425

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Research Chair Grant (P-13-01091) “Zoonotic diseases: role of reservoirs and vectors, diagnosis, mechanism and therapeutic”, by the Cluster and Program Management Office (CPMO) (P-15-50535); the “Wildlife Habitat restoration for prey species of tiger in Dong Phayayen-Khao Yai Forest Complex” (P-18-51249) of the National Science and Technology Development Agency (NSTDA); the Centre for Advanced Studies in Tropical Natural Resources, National Research University, Kasetsart University, (CASTNAR, NRU-KU), Bangkok, Thailand; the EID-SEARCH project under the U.S. National Institute of Allergy and Infectious Diseases of the National Institutes of Health (U01AI151797); and the United States Agency for International Development (USAID) Emerging Pandemic Threats PREDICT program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prateep Duengkae.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 624 KB)

Supplementary file2 (PDF 1922 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaiyes, A., Duengkae, P., Suksavate, W. et al. Mapping Risk of Nipah Virus Transmission from Bats to Humans in Thailand. EcoHealth 19, 175–189 (2022). https://doi.org/10.1007/s10393-022-01588-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-022-01588-6

Keywords

Navigation