Skip to main content

Advertisement

Log in

Methylmercury in Marine Ecosystems: Spatial Patterns and Processes of Production, Bioaccumulation, and Biomagnification

  • Review
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

The spatial variation of MeHg production, bioaccumulation, and biomagnification in marine food webs is poorly characterized but critical to understanding the links between sources and higher trophic levels, such as fish that are ultimately vectors of human and wildlife exposure. This article discusses both large and local scale processes controlling Hg supply, methylation, bioaccumulation, and transfer in marine ecosystems. While global estimates of Hg supply suggest important open ocean reservoirs of MeHg, only coastal processes and food webs are known sources of MeHg production, bioaccumulation, and bioadvection. The patterns observed to date suggest that not all sources and biotic receptors are spatially linked, and that physical and ecological processes are important in transferring MeHg from source regions to bioaccumulation in marine food webs and from lower to higher trophic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aller RC (1978) The effects of animal-sediment interactions on geochemical processes near the sediment-water interface. In: Estuarine Interactions, Wiley ML (editor), Academic Press, pp 157–172

  • Aller RC (1994) Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chemical Geology 114:331–345

    Article  CAS  Google Scholar 

  • Amirbahman A, Reid AL, Haines TA, Kahl JS, Arnold C (2002) Association of methylmercury with dissolved humic acids. Environmental Science & Technology 36:690–695

    Article  CAS  Google Scholar 

  • Atwell L, Hobson KA, Welch HE (1998) Biomagnification and bioaccumulation of mercury in an arctic marine food web: insights from stable nitrogen isotope analysis. Canadian Journal of Fisheries and Aquatic Science 55:1114–1121

    Article  CAS  Google Scholar 

  • Baeyens W, Leermakers M, Papina T, Saprykin A, Brion N, Noyen J, et al. (2003) Bioconcentration and biomagnification of mercury and methylmercury in North Sea and Scheldt Estuary fish. Archives of Environmental Contamination and Toxicology 45:498–508

    Article  CAS  Google Scholar 

  • Balcom PH, Fitzgerald WF, Vandal GM, Lamborg CH, Langer CS, Rolfhus KR, et al. (2004) Mercury sources and cycling in the Connecticut River and Long Island Sound. Marine Chemistry 90:53–74

    Article  CAS  Google Scholar 

  • Balogh SJ, Meyer ML, Johnson DK (1998) Transport of mercury in three contrasting river basins. Environmental Science & Technology 32:456–462

    Article  CAS  Google Scholar 

  • Bank MS, Chesney E, Shine JP, Maage A, Senn DB (2007) Mercury bioaccumulation and trophic transfer in sympatric snapper species from the Gulf of Mexico. Ecological Applications 17:2100–2110

    Article  Google Scholar 

  • Bargagli R, Monaci F, Sanchez-Hernandez JC, Cateni D (1998) Biomagnification of mercury in an Antarctic marine coastal food web. Marine Ecology Progress Series 169:65–76

    Article  CAS  Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography 42:1–20

    CAS  Google Scholar 

  • Benoit JM, Gilmour CC, Mason RP, Reidel GS, Reidel GF (1998) Behavior of mercury in Patuxent River estuary. Biogeochemistry 40:249–265

    Article  CAS  Google Scholar 

  • Benoit JM, Mason RP, Gilmour CC, Aiken GR (2001) Constants for mercury binding by dissolved organic matter isolates from the Florida Everglades. Geochimica et Cosmochimica Acta 65:4445–4451

    Article  CAS  Google Scholar 

  • Benoit JM, Gilmour CC, Heyes A, Mason RP, Miller CL (2003) Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In: Biogeochemistry of Environmentally Important Trace Elements. American Chemical Society Publishers, ACS Symposium Series 835:262–297

  • Benoit JM, Shull DH, Robinson P, Ucran LR (2006) Infaunal burrow densities and sediment monomethyl mercury distributions in Boston Harbor, Massachusetts. Marine Chemistry 102:124–133

    Article  CAS  Google Scholar 

  • Bilinski H, Kwokal Z, Plavsic M, Wrischer M, Branica M (2000) Mercury distribution in the water column of the stratified Krka river estuary (Croatia): importance of natural organic matter and of strong winds. Water Research 34:2001–2010

    Article  CAS  Google Scholar 

  • Block BA, Teo SLH, Walli A, Boustany A, Stokesbury MJW, Farwell CJ, et al. (2005) Electronic tagging and population structure of Atlantic bluefin tuna. Nature 434:1121–1127

    Article  CAS  Google Scholar 

  • Bloom NS (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Canadian Journal of Fisheries and Aquatic Sciences 49:1010–1017

    Article  CAS  Google Scholar 

  • Bloom NS, Watras CJ (1989) Observations of methylmercury in precipitation. The Science of the Total Environment 87–88:199–207

    Google Scholar 

  • Bloom NS, Gill GA, Cappellino S, Dobbs D, McShea L, Driscoll C, et al. (1999) An investigation regarding speciation and cycling of mercury in Lavaca Bay sediments. Environmental Science & Technology 33:7–13

    Article  CAS  Google Scholar 

  • Bothner MH, Spiker EC, Johnson PP, Rendigs RR, Aruscavage PJ (1981) Geochemical evidence for modern sediment accumulation on the continental shelf off southern New England. Journal of Sedimentology and Petrology 51:281–292

    CAS  Google Scholar 

  • Brandt KK, Holm PE, Nybroe O (2008) Evidence for bioavailable copper-dissolved organic matter complexes and transiently increased copper bioavailability in manure-amended soils as determined by bioluminescent bacterial biosensors. Environmental Science & Technology 42:31023108

    Article  CAS  Google Scholar 

  • Campbell LM, Hecky RE, Nyaundiv J, Muggide R, Dixon DG (2003) Distribution and food-web transfer of mercury in Napolean and Winam Gulfs, Lake Victoria, East Africa. Journal of the Great Lakes Research 29:267–282

    CAS  Google Scholar 

  • Campbell LM, Norstrom RJ, Hobson KA, Muir DCG, Backus S, Fisk AT (2005) Mercury and other trace elements in a pelagic arctic marine food web (Northwater Polynya, Baffin Bay). Science of the Total Environment 351352:247–263

    Article  CAS  Google Scholar 

  • Campbell PGC (1995) A critique of the free-ion activity model. In: Metal Speciation and Bioavailability in Aquatic Systems, Tessier A, Turner DR (editors), Chichester, UK: John Wiley & Sons, pp 45–102

    Google Scholar 

  • Cauwet G (2002) DOM in the coastal zone. In: Biogeochemistry of Marine Dissolved Organic Matter, Hansell DA, Carlson CA (editors), Amsterdam: Academic Press, pp 579–609

    Chapter  Google Scholar 

  • Chen CY, Serrell N, Evers DC, Fleishman BJ, Lambert KF, Weiss J, et al. (2008) Methylmercury in marine ecosystems: from sources to seafood consumers—a workshop report. Environmental Health Perspectives. DOI: 10.1289/ehp.1121

  • Choe KY, Gill GA (2001) Isolation of colloidal monomethyl mercury in natural waters using cross-flow ultrafiltration techniques. Marine Chemistry 76:305318

    Article  CAS  Google Scholar 

  • Choe KY, Gill GA (2003) Distribution of particulate, colloidal, and dissolved mercury in San Francisco Bay estuary. 2. Monomethyl mercury. Limnology and Oceanography 48:15471556

    CAS  Google Scholar 

  • Collette BB, Klein-MacPhee G (2002) Bigelow and Schroeder’s Fishes of the Gulf of Maine, 3rd ed., Washington, DC: Smithsonian Institution Press

    Google Scholar 

  • Coquery M, Cossa D, Sanjuan J (1997) Speciation and sorption of mercury in two macro-tidal estuaries. Marine Chemistry 58:213–227

    Article  CAS  Google Scholar 

  • Cossa D, Coquery M, Gobeil C, Martin JM (1996) Mercury fluxes at the ocean margins. In: Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances, Vol 21, Baeyens W, Ebinghaus R, Vasiliev O (editors), Boston: Kluwer Academic Publishers

  • Elderfield H, Schultz A (1996) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annual Review of Earth and Planetary Science 24:191–224

    Article  CAS  Google Scholar 

  • Fenchel T, King GM, Blackburn TH (1998) Bacterial Biogeochemistry. San Diego: Academic Press, pp 307

    Google Scholar 

  • Fisher NS (1985) Accumulation of metals by marine picoplankton. Marine Biology 87:137–142

    Article  CAS  Google Scholar 

  • Fisher NS (1986) On the reactivity of metals for marine phytoplankton. Limnology and Oceanography 31:443–449

    CAS  Google Scholar 

  • Fisher NS, Reinfelder JR (1995) The trophic transfer of metals in marine systems. In: Metal Speciation and Bioavailability in Aquatic Systems, Tessier A,Turner DR (editors), Chichester, UK: John Wiley & Sons, pp 363406

    Google Scholar 

  • Fisher NS, Bohé M, Teyssié JL (1984) Accumulation and toxicity of Cd, Zn, Ag, and Hg in four marine phytoplankters. Marine Ecology Progress Series 18:201–213

    Article  CAS  Google Scholar 

  • Fitzgerald WF, Clarkson TW (1991) Mercury and monomethylmercury: present and future concerns. Environmental Health Perspectives 96:159–166

    Article  CAS  Google Scholar 

  • Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chemical Reviews 107:641–662

    Article  CAS  Google Scholar 

  • Furukawa Y, Bentley SJ, Shiller AM, Lavoie DL, Cappellen PV (2000) The role of biologically-enhanced pore water transport in early diagenesis: an example from carbonate sediments in the vicinity of North Key Harbor, Dry Tortugas National Park, Florida. Journal of Marine Research 58:493–522

    Article  CAS  Google Scholar 

  • Gagnon C, Pelletier E, Mucci A, Fitzgerald W (1996) Diagenetic behavior of methylmercury in organic-rich coastal sediments. Limnology and Oceanography 41:428–434

    Article  CAS  Google Scholar 

  • Gorski PR, Armstrong DE, Hurley JP, Krabbenhoft DP (2008) Influence of natural dissolved organic carbon on the bioavailability of mercury to a freshwater alga. Environmental Pollution 154:116–123

    Article  CAS  Google Scholar 

  • Grandjean P, Weihe P, White RF, Debes F, Arak S, Yokoyama K, et al. (1997) Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicology and Teratology 20:1–12

    Google Scholar 

  • Guentzel JL, Powell RT, Landing WM, Mason RP (1996) Mercury associated with colloidal material in an estuarine and an open-ocean environment. Marine Chemistry 55:177–188

    Article  CAS  Google Scholar 

  • Haitzer M, Aiken GR, Ryan JN (2003) Binding of mercury(II) to aquatic humic substances: influence of pH and source of humic substances. Environmental Science & Technology 37:2436–2441

    Article  CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF (2004) Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environmental Science & Technology 38:1487–1495

    Article  CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF (2006a) Bioaccumulation and trophic transfer of methylmercury in Long Island Sound. Archives Environmental Contamination Toxicology 51:416–424

    Article  CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF (2006b) Methylmercury cycling in sediments on the continental shelf of southern New England. Geochimica et Cosmochimica Acta 70:918–930

    Article  CAS  Google Scholar 

  • Han S, Gill GA (2005) Determination of mercury complexation in coastal and estuarine waters using competitive ligand exchange method. Environmental Science & Technology 39:6607–6615

    Article  CAS  Google Scholar 

  • Han S, Gill GA, Lehman RD, Choe KY (2006) Complexation of mercury by dissolved organic matter in surface waters of Galveston Bay, Texas. Marine Chemistry 98:156–166

    Article  CAS  Google Scholar 

  • Hines ME, Evans RE, Genthner BRS, Willis SG, Friedman S, Rooney-Varga JN, et al. (1999) Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Applied Environmental Microbiology 65:2209–2216

    CAS  Google Scholar 

  • Hintelmann H, Welbourn PM, Evans RD (1997) Measurement of complexation of methylmercury(II) compounds by freshwater humic substances using equilibrium dialysis. Environmental Science & Technology 31:489–495

    Article  CAS  Google Scholar 

  • Holz J, Kreutzmann J, Wilken RD, Falter R (1999) Methylmercury monitoring in rainwater samples using in situ ethylation in combination with GC-AFS and GC-ICP-MS techniques. Applied Organometallic Chemistry 13:789–794

    Article  CAS  Google Scholar 

  • Hurley JP, Cowell SE, Shafer MM, Hughes PE (1998) Partitioning and transport of total and methyl mercury in the Lower Fox River, Wisconsin. Environmental Science & Technology 32:1424–1432

    Article  CAS  Google Scholar 

  • IAEA. (2004) Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment, Technical Report Series No. 422, Vienna: International Atomic Energy Agency, pp 103

    Google Scholar 

  • Jarman WM, Hobson KA, Sydeman WJ, Bacon CE, McLaren EB (1996) Influence of trophic position and feeding location on contaminant levels in the Gulf of the Farallones food web revealed by stable isotope analysis. Environmental Science & Technology 30:654–660

    Article  CAS  Google Scholar 

  • Kidd KA, Hesslein RH, Fudge RJP, Hallard KA (1995) The influence of trophic level as measured by δ15N on mercury concentrations in freshwater organisms. Water, Air and Soil Pollution 80:1011–1015

    Article  CAS  Google Scholar 

  • Kneib RT (1997) The role of tidal marshes in the ecology of estuarine nekton. Oceanography and Marine Biology Annual Review 35:163–220

    Google Scholar 

  • Kneib RT (2000) Salt marsh ecoscapes and production transfers by estuarine nekton in the southeastern United States. In: Concepts and Controversies in Tidal Marsh Ecology, Weinstein MP, Kreeger DA (editors), Boston: Kluwer Academic Publishers, pp 267–291

  • Kraepiel AML, Keller K, Chin HB, Malcolm EG, Morel FMM (2003) Sources and variations of mercury in tuna. Environmental Science & Technology 37:5551–5558

    Article  CAS  Google Scholar 

  • Lambertsson L, Nilsson M (2006) Organic material: the primary control on mercury methylation and ambient methyl mercury concentrations in estuarine sediments. Environmental Science & Technology 40:1822–1829

    Article  CAS  Google Scholar 

  • Lamborg CH, Rolfhus KR, Fitzgerald WF, Kim G (1999) The atmospheric cycling and air-sea exchange of mercury species in the South and equatorial Atlantic Ocean. Deep-Sea Research Part II—Topical Studies in Oceanography 46:957–977

    Article  CAS  Google Scholar 

  • Lamborg CH, Fitzgerald WF, O’Donnell J, Torgersen T (2002) A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochimica et Cosmochimica Acta 66:1105–1118

    Article  CAS  Google Scholar 

  • Lamborg CH, Tseng CM, Fitzgerald WF, Balcom PH, Hammerschmidt CR (2003) Determination of the mercury complexation characteristics of dissolved organic matter in natural waters with “reducible Hg” titrations. Environmental Science & Technology 37:3316–3322

    Article  CAS  Google Scholar 

  • Lamborg CH, Von Damm KL, Fitzgerald WF, Hammerschmidt CR, Zierenberg RA (2006) Mercury and monomethylmercury in fluids from Sea Cliff Submarine hydrothermal field, Gorda Ridge. Geophysical Research Letters 33:L17606. doi: 10.1029/2006GL026321

  • Laurier FJG, Cossa D, Gonzalez JL, Breviere E, Sarazin G (2003) Mercury transformations and exchanges in a high turbidity estuary: the role of organic matter and amorphous oxyhydroxides. Geochimica et Cosmochimica Acta 67:3329–3345

    Article  CAS  Google Scholar 

  • Laurier FJG, Mason RP, Gill GA, Whalin L (2004) Mercury distributions in the North Pacific Ocean: 20 years of observations. Marine Chemistry 90:3–19

    Article  CAS  Google Scholar 

  • Lawrence AL, Mason RP (2001) Factors controlling the bioaccumulation of mercury and methylmercury by the estuarine amphipod Leptocheirus plumulosus. Environmental Pollution 11:217–231

    Article  Google Scholar 

  • Lindqvist O, Johansson K, Astrup M, Andersson A, Bringmark L, Hovsenius G, et al. (1991) Mercury in the Swedish environment: recent research on causes, consequences and corrective methods. Water, Air, and Soil Pollution 55:1–252

    Article  Google Scholar 

  • Mason RP (2002) The bioaccumulation of mercury, methylmercury, and other toxic elements into pelagic and benthic organisms. In: Coastal and Estuarine Risk Assessment, Newman MC, Roberts MH Jr, Hale RC (editors), Boca Raton: Lewis Publishers, pp 127–149

  • Mason RP, Fitzgerald WF (1991) Mercury speciation in open ocean waters. Water, Air, and Soil Pollution 56:779–789

    Article  CAS  Google Scholar 

  • Mason RP, Fitzgerald WF, Vandal GM (1992) The sources and composition of mercury in Pacific Ocean rain. Journal of Atmospheric Chemistry 14:489–500

    Article  CAS  Google Scholar 

  • Mason RP, Fitzgerald WF, Morel FMM (1994) The biogeochemical cycling of elemental mercury—anthropogenic influences. Geochimica et Cosmochimica Acta 58:3191–3198

    Article  CAS  Google Scholar 

  • Mason RP, Reinfelder JR, Morel FMM (1996) Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environmental Science & Technology 30:1835–1845

    Article  CAS  Google Scholar 

  • Mason RP, Lawson NM, Sullivan KA (1997) The concentration, speciation and sources of mercury in Chesapeake Bay precipitation. Atmospheric Environment 31:3541–3550

    Article  CAS  Google Scholar 

  • Mason RP, Lawson NM, Lawrence AL, Leaner JJ, Lee JG, Sheu GR (1999) Mercury in the Chesapeake Bay. Marine Chemistry 65:77–96

    Article  CAS  Google Scholar 

  • Mathews T, Fisher NS (2008) Evaluating the trophic transfer of cadmium, polonium, and methylmercury in an estuarine food chain. Environmental Toxicology and Chemistry 27:1093–1101

    Article  CAS  Google Scholar 

  • Merritt KA, Amirbahman A (2008) Cycling of methylmercury in estuarine sediment porewaters (Penobscot River Estuary, Maine, USA). Limnology and Oceanography 53:1064–1075

    CAS  Google Scholar 

  • Moye HA, Miles CJ, Phlips EJ, Sargent B, Merritt KK (2002) Kinetics and uptake mechanisms for monomethylmercury between freshwater algae and water. Environmental Science & Technology 36:3550–3555

    Article  CAS  Google Scholar 

  • Pickhardt PC, Fisher NS (2007) Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies. Environmental Science & Technology 41:125–131

    Article  CAS  Google Scholar 

  • Ravichandran M (2004) Interactions between mercury and dissolved organic matter—a review. Chemosphere 55:319–331

    Article  CAS  Google Scholar 

  • Reinfelder JR, Fisher NS (1991) The assimilation of elements ingested by marine copepods. Science 251:794–796

    Article  CAS  Google Scholar 

  • Roditi HA, Fisher NS, Sañudo-Wilhelmy SA (2000) Uptake of dissolved organic carbon and trace elements by zebra mussels. Nature 407:78–80

    Article  CAS  Google Scholar 

  • Salonen J, Seppanen K, Nyyssonen K, Korpela H, Kauhanen J, Kantola M, et al. (1995) Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular and any death in Eastern Finnish men. Circulation 91:645–655

    CAS  Google Scholar 

  • Sorensen N, Murata K, Budtz-Jorgensen E, Weihe P, Grandjean P (1999) Prenatal methylmercury exposure as a cardiovascular risk factor at seven years of age. Epidemiology 10:370–375

    Article  CAS  Google Scholar 

  • Stordal MC, Gill GA, Wen LS, Santschi PH (1996) Mercury phase speciation in the surface waters of three Texas estuaries: importance of colloidal forms. Limnology and Oceanography 41:52–61

    CAS  Google Scholar 

  • Sunderland EM (2007) Mercury exposure from domestic and imported estuarine and marine fish in the U.S. seafood market. Environmental Health Perspectives 115:235–242

    Article  CAS  Google Scholar 

  • Sunderland EM, Mason RP (2007) Human impacts on open ocean mercury concentrations. Global Biogeochemical Cycles 21:GB4022

    Article  CAS  Google Scholar 

  • Thurman EM (1985) Organic Geochemistry of Natural Waters. Dordrecht, The Netherlands: Martinus Nijhoff /Dr. W. Junk Publisher, pp 497

  • Topping G, Davies IM (1981) Methylmercury production in the marine water column. Nature 290:243–244

    Article  CAS  Google Scholar 

  • Turner A, Millward GE, LeRoux SM (2001) Sediment-water partitioning of inorganic mercury in estuaries. Environmental Science & Technology 35:4648–4654

    Article  CAS  Google Scholar 

  • U.S. EPA (1997) Mercury Study Report to Congress. Volume VII: An Ecological Assessment of Anthropogenic Mercury Emissions in the United States. EPA-452/R-97-008. Washington, DC: U.S. Environmental Protection Agency

  • U.S. EPA (2002) Estimated per Capita Fish Consumption in the United States, August 2002. EPA-821-C-02-003. Washington, DC: U.S. Environmental Protection Agency

  • Watras CJ, Bloom NS (1992) Mercury and methylmercury in individual zooplankton—implications for bioaccumulation. Limnology and Oceanography 37:1313–1318

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from National Institute of Environmental Health Sciences to hold a workshop entitled, “Fate and Bioavailability of Mercury in Aquatic Ecosystems and Effects on Human Exposure” from which this manuscript was initiated. Effort toward manuscript preparation was partially supported by NIH grant number P42 ESO7373 from the NIEHS; SERDP funds from the Department of Defense; the ESSRF (Environmental Science Strategic Research Fund) DFO, Canada; Woods Hole Sea Grant, Woods Hole Coastal Ocean Institute; National Science Foundation; and RI-INBRE grant number P20RR016457 from NCRR, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celia Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Amirbahman, A., Fisher, N. et al. Methylmercury in Marine Ecosystems: Spatial Patterns and Processes of Production, Bioaccumulation, and Biomagnification. EcoHealth 5, 399–408 (2008). https://doi.org/10.1007/s10393-008-0201-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-008-0201-1

Keywords

Navigation