Skip to main content

Advertisement

Log in

Semi-automated software to measure luminal and stromal areas of choroid in optical coherence tomographic images

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To determine the capabilities of “EyeGround” software in measuring the choroidal cross sectional areas in optical coherence tomographic (OCT) images.

Study design

Cross sectional, prospective study.

Methods

The cross-sectional area of the subfoveal choroid within a 1500 µm diameter circle centered on the fovea was measured both with and without using the EyeGround software in the OCT images. The differences between the evaluation times and the results of the measurements were compared. The inter-rater, intra-rater, inter-method agreements were determined.

Results

Fifty-one eyes of 51 healthy subjects were studied: 24 men and 27 women with an average age of 35.0 ± 8.8 years. The time for analyzing a single image was significantly shorter with the software at 3.2±1.1 min than without the software at 12.1±5.1 min (P <0.001). The inter-method correlation efficient for the measurements of the whole choroid was high [0.989, 95% CI (0.981-0.994)]. With the software, the inter-rater correlation efficient was significantly high [0.997, 95% CI (0.995-0.999)], and the intra-rater correlation efficient was also significantly high [0.999, 95% CI (0.999-1.0)].

Conclusion

The EyeGround software can measure the choroidal area in the OCT cross sectional images with good reproducibility and in a significantly shorter times. It can be a valuable tool for analyzing the choroid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Castro-Correia J. Understanding the choroid. Int Ophthalmol. 1995;19:135–47.

    Article  PubMed  Google Scholar 

  2. Lutty GA, Cao J, McLeod DS. Relationship of polymorphonuclear leukocytes to capillary dropout in the human diabetic choroid. Am J Pathol. 1997;151:707–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29:1469–73.

    Article  PubMed  Google Scholar 

  4. Laude A, Cackett PD, Vithana EN, Yeo IY, Wong D, Koh AH, et al. Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration: same or different disease? Prog Retin Eye Res. 2010;29:19–29.

    Article  PubMed  Google Scholar 

  5. Saito M, Kano M, Itagaki K, Ise S, Imaizumi K, Sekiryu T. Subfoveal choroidal thickness in polypoidal choroidal vasculopathy after switching to intravitreal aflibercept injection. Jpn J Ophthalmol. 2016;60:35–41.

    Article  CAS  PubMed  Google Scholar 

  6. Yoshikawa M, Akagi T, Nakanishi H, Ikeda HO, Morooka S, Yamada H, et al. Longitudinal change in choroidal thickness after trabeculectomy in primary open-angle glaucoma patients. Jpn J Ophthalmol. 2017;61:105–12.

    Article  PubMed  Google Scholar 

  7. Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146:496–500.

    Article  PubMed  Google Scholar 

  8. Yamazaki T, Koizumi H, Yamagishi T, Kinoshita S. Subfoveal choroidal thickness after ranibizumab therapy for neovascular age-related macular degeneration: 12-month results. Ophthalmology. 2012;119:1621–7.

    Article  PubMed  Google Scholar 

  9. Sonoda S, Sakamoto T, Otsuka H, Yoshinaga N, Yamashita T, Ki-I Y, et al. Responsiveness of eyes with polypoidal choroidal vasculopathy with choroidal hyperpermeability to intravitreal ranibizumab. BMC Ophthalmol. 2013;13:43. https://doi.org/10.1186/1471-2415-13-43.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rayess N, Rahimy E, Ying GS, Bagheri N, Ho AC, Regillo CD, et al. Baseline choroidal thickness as a predictor for response to anti-vascular endothelial growth factor therapy in diabetic macular edema. Am J Ophthalmol. 2015;159:85–91. https://doi.org/10.1016/j.ajo.2014.09.033.

    Article  CAS  PubMed  Google Scholar 

  11. Branchini LA, Adhi M, Regatieri CV, Nandakumar N, Liu JJ, Laver N, et al. Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography. Ophthalmology. 2013;120:1901–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sohrab M, Wu K, Fawzi AA. A pilot study of morphometric analysis of choroidal vasculature in vivo, using en face optical coherence tomography. PLoS One. 2012;7:e48631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sonoda S, Sakamoto T, Yamashita T, Shirasawa M, Uchino E, Terasaki H, et al. Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Investig Ophthalmol Vis Sci. 2014;55:3893–9.

    Article  Google Scholar 

  14. Sonoda S, Sakamoto T, Yamashita T, Uchino E, Kawano H, Yoshihara N, et al. Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol. 2015;159(1123–31):e1. https://doi.org/10.1016/j.ajo.2015.03.005.

    Google Scholar 

  15. Iwata A, Mitamura Y, Niki M, Semba K, Egawa M, Katome T, et al. Binarization of enhanced depth imaging optical coherence tomographic images of an eye with Wyburn–Mason syndrome: a case report. BMC Ophthalmol. 2015;15:19.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Egawa M, Mitamura Y, Semba K, Naito T, Sonoda S, Sakamoto T. Changes of choroidal structure after treatment of primary intraocular lymphoma. BMC Ophthalmol. 2015;15:136.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kawano H, Sonoda S, Yamashita T, Maruko I, Iida T, Sakamoto T. Relative changes in luminal and stromal areas of choroid determined by binarization of EDI-OCT images in eyes with Vogt–Koyanagi–Harada disease after treatment. Graefes Arch Clin Exp Ophthalmol. 2016;254:421–6. https://doi.org/10.1007/s00417-016-3283-4.

    Article  PubMed  Google Scholar 

  18. Kinoshita T, Mitamura Y, Shinomiya K, Egawa M, Iwata A, Fujihara A, et al. Diurnal variations in luminal and stromal areas of choroid in normal eyes. Br J Ophthalmol. 2016. https://doi.org/10.1136/bjophthalmol-2016-308594.

    PubMed Central  Google Scholar 

  19. Sonoda S, Sakamoto S, Kuroiwa N, Arimura N, Kawano H, Yoshihara N, et al. Structural changes of inner and outer choroid in central serous chorioretinopathy determined by optical coherence tomography. PLoS One. 2016;11:e0157190. https://doi.org/10.1371/journal.pone.0157190.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Egawa M, Mitamura Y, Akaiwa K, Semba K, Kinoshita T, Uchino E, et al. Vogt–Koyanagi–Harada disease. Br J Ophthalmol. 2016;100:1646–50. https://doi.org/10.1136/bjophthalmol-2015-307734.

    Article  PubMed  Google Scholar 

  21. Izumi T, Koizumi H, Maruko I, Takahashi Y, Sonoda S, Sakamoto T, et al. Structural analyses of choroid after half-dose verteporfin photodynamic therapy for central serous chorioretinopathy. Br J Ophthalmol. 2016. https://doi.org/10.1136/bjophthalmol-2016-308921.

    PubMed  Google Scholar 

  22. Kinoshita T, Mitamura Y, Mori T, Akaiwa K, Semba K, Egawa M, et al. Changes in choroidal structures in eyes with chronic central serous chorioretinopathy after half-dose photodynamic therapy. Changes in choroidal structures in eyes with chronic central serous chorioretinopathy after half-dose photodynamic therapy. PLoS One. 2016;11(9):e0163104. https://doi.org/10.1371/journal.pone.0163104.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nishi T, Ueda T, Mizusawa Y, Shinomiya K, Semba K, Mitamura Y, et al. Choroidal structure in children with anisohypermetropic amblyopia determined by binarization of optical coherence tomographic images. PLoS One. 2016;11(10):e0164672. https://doi.org/10.1371/journal.pone.0164672.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kawano H, Sonoda S, Saito S, Terasaki H, Sakamoto T. Choroidal structure altered by degeneration of retina in eyes with retinitis pigmentosa. Retina. 2017;37:2175–82. https://doi.org/10.1097/iae.0000000000001465.

    Article  PubMed  Google Scholar 

  25. Kinoshita T, Mori J, Okuda N, Imaizumi H, Iwasaki M, Shimizu M, et al. Effects of Exercise on the Structure and Circulation of Choroid in Normal Eyes. PLoS One. 2016;11:e0168336. https://doi.org/10.1371/journal.pone.0168336.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Daizumoto E, Mitamura Y, Sano H, Akaiwa K, Niki M, Yamanaka C, et al. Changes of choroidal structure after intravitreal aflibercept therapy for polypoidal choroidal vasculopathy. Br J Ophthalmol. 2017;101(1):56–61. https://doi.org/10.1136/bjophthalmol-2016-309694.

    Article  PubMed  Google Scholar 

  27. Yamashita T, Yamashita T, Shirasawa M, Arimura N, Terasaki H, Sakamoto T. Repeatability and reproducibility of subfoveal choroidal thickness in normal eyes of japanese using different SD-OCT devices. Investig Ophthalmol Vis Sci. 2012;53:1102–7.

    Article  Google Scholar 

  28. Matsuo Y, Sakamoto T, Yamashita T, Tomita M, Shirasawa M, Terasaki H. Comparisons of choroidal thickness of normal eyes obtained by two different spectral-domain OCT instruments and one swept-source OCT instrument. Investig Ophthalmol Vis Sci. 2013;54:7630–6.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Emeritus Duco Hamasaki of the Bascom Palmer Eye Institute of the University of Miami for providing critical discussions and suggestions to our study and revision of the final manuscript. This study was done by a grant from the Research Committee on Chorioretinal Degeneration and Optic Atrophy, Ministry of Health, Labor, and Welfare, Tokyo, Japan; and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of the Japanese Government, Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiji Sakamoto.

Ethics declarations

Conflicts of interest

S. Sonoda, None; T. Sakamoto, None; N. Kakiuchi, None; H. Shiihara, None; T. Sakoguchi, None; M. Tomita, None; T. Yamashita, None; E. Uchino, None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10384_2017_558_MOESM1_ESM.tif

Supplementary Fig. S1 Representative images of the protocol of EyeGround software. Detailed protocol is as described in Methods. (a). Screen image of step 4. (b) Screen image of step 6-1. (c) Screen image of step 6-2. (d) Screen image of step 6-3. (e) Screen image of step 7. (f) Screen image of step 8. (g) Screen image of step 9.OCT Images with EyeGround software screen. (TIFF 675 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonoda, S., Sakamoto, T., Kakiuchi, N. et al. Semi-automated software to measure luminal and stromal areas of choroid in optical coherence tomographic images. Jpn J Ophthalmol 62, 179–185 (2018). https://doi.org/10.1007/s10384-017-0558-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-017-0558-1

Keywords

Navigation