Skip to main content
Log in

Determination of nonsteroidal anti-inflammatory drugs in human tear and plasma samples using ultra-fast liquid chromatography-tandem mass spectrometry

  • Laboratory Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate a new rapid and sensitive method for analyzing human tears and plasma for nonsteroidal anti-inflammatory drugs (NSAIDs) and investigate the influence of the transfer of NSAIDs in an ocular lesion.

Methods

In this cross-over study, a single dose of 200 mg of ibuprofen and 60 mg of loxoprofen sodium were orally administered to six healthy Japanese subjects. Collected samples were analyzed by ultra-fast liquid chromatography tandem mass spectrometry (UFLC-MS/MS).

Results

Recoveries of the two drugs spiked in the tears and plasma were 96.0–117.0 % in the tears and 99.0–105.7 % in the plasma. Regression equations for both NSAIDs showed excellent linearity from 0.02–1.0 μg/ml for the tears and 0.1–5.0 μg/ml for the plasma, with the limits of detection at 0.02 μg/ml for tears and 0.1 μg/ml for plasma.

Conclusion

This new high-throughput NSAID determination method only requires a small tear amount (10 μl) and plasma volume (20 μl) and thus will be useful in clinical and toxicological analyses. Analytical results also showed the presence of ibuprofen and loxoprofen in the actual tears and plasma, which confirms the transition of NSAIDs from the tears to the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bushra R, Aslam N. An overview of clinical pharmacology of Ibuprofen. Oman Med J. 2010;25:155–1661.

    PubMed Central  PubMed  Google Scholar 

  2. Terada A, Naruto S, Wachi K, Tanaka S, Iizuka Y, Misaka E. Synthesis and antiinflammatory activity of [(Cycloalkylmethyl)phenyl]acetic acids and related compounds. J Med Chem. 1984;404:212–6.

    Article  Google Scholar 

  3. Tsurumaki N, Tsuchihashi H. The application of adverse effect database of drug 30. Comparison between ibuprofen and loxoprofen sodium hydrate in efficacy. Safety and economy. Japanese J Med Pharm Sci. 2013;69:275–81.

    Google Scholar 

  4. Fraunfelder FW, Solomon J, Mehelas TJ. Ocular adverse effects associated with cyclooxygenase-2 inhibitors. Arch Ophthalmol. 2006;124:277–9.

    Article  PubMed  Google Scholar 

  5. Monaco F, Piredda S, Mutani R, Mastropaolo C, Tondi M. The free fraction of valproic acid in tears, saliva, and cerebrospinal fluid. Epilepsia. 1982;23:23–6.

    Article  CAS  PubMed  Google Scholar 

  6. Mirejovsky D, Patel AS, Rodriguez DD, Hunt TJ. Lipid adsorption onto hydrogel contact lens materials. Advantages of Nile red over oil red O in visualization of lipids. Optom Vis Sci. 1991;68:858–64.

    Article  CAS  PubMed  Google Scholar 

  7. U.S.Food and Drug Administration. Guidance for industry analytical procedures and methods validation for drugs and biologics. FDA. 2014. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM386366.pdf.

  8. Lutz EG. Allergic conjunctivitis due to Diazepam. Am J Psychiatry. 1975;132:548.

    Article  CAS  PubMed  Google Scholar 

  9. Fraunfelder FT, LaBraico JM, Meyer SM. Adverse ocular reactions possibly associated with isotretinoin. Am J Ophthalmol. 1985;100:534–7.

    Article  CAS  PubMed  Google Scholar 

  10. Nakajima M, Sato S, Yamato S, Shimada K, Kitagawa S, Honda A, et al. Assessment of tear concentrations on therapeutic drug monitoring. III. Determination of theophylline in tears by gas chromatography/mass spectrometry with electron ionization mode. Drug Metab Pharmacokinet. 2003;18:139–45.

    Article  CAS  PubMed  Google Scholar 

  11. Mora P, Ceglarek U, Manzotti F, Zavota L, Carta A, Aldigeri R, et al. Cyclosporin A in the ocular fluids of uveitis patients following long-term systemic administration. Graefes Arch Clin Exp Ophthalmol. 2008;246:1047–52.

    Article  CAS  PubMed  Google Scholar 

  12. Lee X-P, Kumazawa T, Hasegawa C, Arinobu T, Kato A, Seno H, et al. Determination of nonsteroidal anti-inflammatory drugs in human plasma by LC–MS-MS with a hydrophilic polymer column. Forensic Toxicol. 2010;28:96–104.

    Article  CAS  Google Scholar 

  13. Nemoto T, Lee X-P, Kumazawa T, Hasegawa C, Fujishiro M, Marumo A, et al. High-throughput determination of nonsteroidal anti-inflammatory drugs in human plasma by HILIC–MS/MS. J Pharm Biomed Anal. Elsevier B.V.; 2014;88:71–80.

  14. Canaparo R, Muntoni E, Zara GP, Della Pepa C, Berno E, Costa M, et al. Determination of Ibuprofen in human plasma by high-performance liquid chromatography: validation and application in pharmacokinetic study. Biomed Chromatogr. 2000;14:219–26.

    Article  CAS  PubMed  Google Scholar 

  15. Choo K-S, Kim I-W, Jung J-K, Suh Y-G, Chung S-J, Lee M-H, et al. Simultaneous determination of loxoprofen and its diastereomeric alcohol metabolites in human plasma and urine by a simple HPLC-UV detection method. J Pharm Biomed Anal. 2001;25:639–50.

    Article  CAS  PubMed  Google Scholar 

  16. Lee HW, Ji HY, Sohn DH, Kim S-M, Lee YB, Lee HS. Liquid chromatography-tandem mass spectrometry method of loxoprofen in human plasma. Biomed Chromatogr. 2009;23:714–8.

    Article  CAS  PubMed  Google Scholar 

  17. Suenami K, Lim LW, Takeuchi T, Sasajima Y, Sato K, Takekoshi Y, et al. Rapid and simultaneous determination of nonsteroidal anti-inflammatory drugs in human plasma by LC-MS with solid-phase extraction. Anal Bioanal Chem. 2006;384:1501–5.

    Article  CAS  PubMed  Google Scholar 

  18. Cho H-Y, Park C-H, Lee Y-B. Direct and simultaneous analysis of loxoprofen and its diastereometric alcohol metabolites in human serum by on-line column switching liquid chromatography and its application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;835:27–34.

    Article  CAS  PubMed  Google Scholar 

  19. Farrar H, Letzig L, Gill M. Validation of a liquid chromatographic method for the determination of ibuprofen in human plasma. J Chromatogr B. 2002;780:341–8.

    Article  CAS  Google Scholar 

  20. Arnold DR, Granvil CP, Ward KW, Proksch JW. Quantitative determination of besifloxacin, a novel fluoroquinolone antimicrobial agent, in human tears by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;867:105–10.

    Article  CAS  PubMed  Google Scholar 

  21. Chiambaretta F, Garraffo R, Elena P, Pouliquen P, Delval L, Rigal D, et al. Tear concentrations of azithromycin following topical administration of a single dose of (T1225) in healthy volunteers. Eur J Opthalmology. 2008;18:13–20.

    CAS  Google Scholar 

  22. Davies NM. Clinical pharmacokinetics of ibuprofen. The first 30 years. Clin Pharmacokinet. 1998;34:101–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

M. Hirosawa, None; T. Sambe, None; N. Uchida, None; X.-P. Lee, None; K. Sato, None; S. Kobayashi, None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makiko Hirosawa.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirosawa, M., Sambe, T., Uchida, N. et al. Determination of nonsteroidal anti-inflammatory drugs in human tear and plasma samples using ultra-fast liquid chromatography-tandem mass spectrometry. Jpn J Ophthalmol 59, 364–371 (2015). https://doi.org/10.1007/s10384-015-0389-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-015-0389-x

Keywords

Navigation