Skip to main content

Advertisement

Log in

Quadrantal macular retinal thickness changes in strabismus subjects with abnormal binocular vision development

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate retinal morphological changes in strabismus patients with abnormal binocular vision development by comparing differences in quadrantal macular retinal thickness.

Methods

Six strabismus patients (6 dominant and 5 non-dominant eyes) with abnormal binocular vision (mean age 22 years), and 11 control subjects (11 dominant and 11 non-dominant eyes) (mean age 21 years) were enrolled. Macular retinal thickness measurements were performed by optical coherence tomography, with total macular retinal (TMR) and ganglion cell complex (GCC) thicknesses measured in 3- and 6-mm regions in each quadrant. Measurement values were then used to determine quadrant ratios.

Results

Compared to the dominant eyes of the controls, the superior/inferior (S/I) ratio of the TMR thickness and GCC thickness in the 3-mm region was significantly lower in the dominant eyes of the strabismus group (P < 0.05, each). The superior temporal/inferior temporal (ST/IT) ratio of the GCC thickness in the dominant eyes of the strabismus group was also significantly lower (P < 0.01).

Conclusions

Dominant eyes of the strabismus group with abnormal binocular vision development exhibited thinner superior temporal GCC thicknesses in the 3-mm region. Retinal ganglion cells in this region might be affected by efferent neural degeneration that originates in the visual pathway responsible for adaptations to the visual experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wright KW. Clinical optokinetic nystagmus asymmetry in treated esotropes. J Pediatr Ophthalmol Strabismus. 1996;33:153–5.

    PubMed  CAS  Google Scholar 

  2. van Hof-van Duin J, Mohn G. Monocular and binocular optokinetic nystagmus in humans with defective stereopsis. Invest Ophthalmol Vis Sci. 1986;27:574–83.

    Google Scholar 

  3. Tychsen L, Burkhalter A. Neuroanatomic abnormalities of primary visual cortex in macaque monkeys with infantile esotropia: preliminary results. J Pediatr Ophthalmol Strabismus. 1995;32:323–8.

    PubMed  CAS  Google Scholar 

  4. Horton JC, Hocking DR, Adams DL. Metabolic mapping of suppression scotomas in striate cortex of macaques with experimental strabismus. J Neurosci. 1999;19:7111–29.

    PubMed  CAS  Google Scholar 

  5. Wong AMF, Lueder GT, Brukhalter A, Tychsen L. Suppression of metabolic activity caused by infantile strabismus and strabismic amblyopia in striate visual cortex of macaque monkeys. J AAPOS. 2005;9:37–47.

    Article  PubMed  Google Scholar 

  6. Altintas O, Yüksel N, Ozkan B, Caglar Y. Thickness of the retinal nerve fiber layer, macular thickness, and macular volume in patients with strabismic amblyopia. J Pediatr Ophthalmol Strabismus. 2005;42:216–21.

    PubMed  Google Scholar 

  7. Kee SY, Lee SY, Lee YC. Thicknesses of the fovea and retinal nerve fiber layer in amblyopic and normal eyes in children. Korean J Ophthalmol. 2006;20:177–81.

    Article  PubMed  Google Scholar 

  8. Quoc EB, Delepine B, Tran TH. Thickness of retinal nerve fiber layer and macular volume in children and adults with strabismic and anisometropic amblyopia. J Fr Ophthalmol. 2009;32:488–95.(in French).

    Google Scholar 

  9. Al-Haddad CE, Mollayess GM, Cherfan CG, Jaafar DF, Bashshur ZF. Retinal nerve fibre layer and macular thickness in amblyopia as measured by spectral-domain optical coherence tomography. Br J Ophthalmol. 2011;95:1696–9.

    Article  PubMed  Google Scholar 

  10. Dickmann A, Petroni S, Perrotta V, Salerni A, Parrilla R, Aliberti S, et al. A morpho-functional study of amblyopic eyes with the use of optical coherence tomography and microperimetry. J AAPOS. 2011;15:338–41.

    Article  PubMed  Google Scholar 

  11. Lim MC, Hoh ST, Foster PJ, Lim TH, Chew SJ, Seah SK, et al. Use of optical coherence tomography to assess variations in macular retinal thickness in myopia. Invest Ophthalmol Vis Sci. 2005;46:974–8.

    Article  PubMed  Google Scholar 

  12. Lam DS, Leung KS, Mohamed S, Chan WM, Palanivelu MS, Cheung CY, et al. Regional variations in the relationship between macular thickness measurements and myopia. Invest Ophthalmol Vis Sci. 2007;48:376–82.

    Article  PubMed  Google Scholar 

  13. Gaze RM, Keating MJ, Székely G, Beazley L. Binocular interaction in the formation of specific intertectal neuronal connexions. Proc R Soc Lond B Biol Sci. 1970;175:107–47.

    Article  PubMed  CAS  Google Scholar 

  14. Distler C, Hoffmann KP. The pupillary light reflex in normal and innate microstrabismic cats, II: retinal and cortical input to the nucleus praetectalis olivaris. Vis Neurosci. 1989;3:139–53.

    Article  PubMed  CAS  Google Scholar 

  15. Sireteanu R. Binocular luminance summation in humans with defective binocular vision. Invest Ophthalmol Vis Sci. 1987;28:349–55.

    PubMed  CAS  Google Scholar 

  16. Rodieck RW. Visual angle and retinal eccentricity. In: Rodieck RW, editor. The first steps in seeing. Massachusetts: Sinauer Associates; 1998. p. 125.

    Google Scholar 

  17. Feldon P, Kruger L. Topography of the retinal projection upon the superior colliculus of the cat. Vision Res. 1970;10:135–43.

    Article  PubMed  CAS  Google Scholar 

  18. Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300:5–25.

    Article  PubMed  CAS  Google Scholar 

  19. Fukuda Y, Sawai H, Watanabe M, Wakakuwa K, Morigiwa K. Nasotemporal overlap of crossed and uncrossed retinal ganglion cell projections in the Japanese monkey (Macaca fuscata). J Neurosci. 1989;9:2353–73.

    PubMed  CAS  Google Scholar 

  20. Wright KW, Edelman PM, McVey JH, Terry AP, Lin M. High-grade stereo acuity after early surgery for congenital esotropia. Arch Ophthalmol. 1994;112:913–9.

    Article  PubMed  CAS  Google Scholar 

  21. van Rijn LJ, Simonsz HJ, Tusscher MP. Dissociated vertical deviation and eye torsion: relation to disparity-induced vertical vergence. Strabismus. 1997;5:13–20.

    Article  PubMed  Google Scholar 

  22. ten Tusscher MP, van Rijn RJ. A hypothetical mechanism for DVD: unbalanced cortical input to subcortical pathways. Strabismus. 2010;18:98–103.

    Article  PubMed  Google Scholar 

  23. Guthrie ME, Wright KW. Congenital esotropia. Ophthalmol Clin North Am. 2001;14:419–24.

    Article  PubMed  CAS  Google Scholar 

  24. Brodsky MC. Dissociated vertical divergence. A right reflex gone wrong. Arch Ophthalmol. 1999;117:1216–22.

    Article  PubMed  CAS  Google Scholar 

  25. Rodieck RW. Superior colliculus. In: Rodieck RW, editor. The first steps in seeing. Massachusetts: Sinauer Associates; 1998. p. 273–8.

    Google Scholar 

  26. Takaura K, Yoshida M, Isa T. Neural substrate of spatial memory in the superior colliculus after damage to the primary visual cortex. J Neurosci. 2011;31:4233–41.

    Article  PubMed  CAS  Google Scholar 

  27. Yagasaki T, Yokoyama YO, Maeda M. Influence of timing of initial surgery for infantile esotropia on the severity of dissociated vertical deviation. Jpn J Ophthalmol. 2011;55:383–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayumi Oka.

About this article

Cite this article

Oka, M., Yamashita, T., Ono, S. et al. Quadrantal macular retinal thickness changes in strabismus subjects with abnormal binocular vision development. Jpn J Ophthalmol 57, 225–232 (2013). https://doi.org/10.1007/s10384-012-0214-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-012-0214-8

Keywords

Navigation