Skip to main content
Log in

Bedeutung der transoralen robotischen Chirurgie in der HNO

Role of Robotic Surgery in ENT

  • themenschwerpunkt
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Operationsroboter sind seit Anfang dieses Jahrhunderts auch bei HNO Eingriffen im Einsatz. Dabei unterstützen sie den Chirurgen in erster Linie bei minimalinvasiven transoralen Operationen. Vor allem im multidisziplinären Behandlungskonzept von Kopf- und Halstumoren, aber auch bei Schnarchoperationen stellt der Roboter eine Ergänzung zur etablierten transoralen Laserchirurgie dar. Mittlerweile gibt es eine große Anzahl von Daten, die sich mit seiner Bedeutung in Hinblick auf onkologische Ergebnisse, Funktionserhalt, Wirtschaftlichkeit und Zukunftsperspektiven beschäftigen.

Die Einsatzgebiete im HNO Bereich sind mit den derzeitigen Geräten noch begrenzt, sodass aufgrund geringer Fallzahlen Bestrebungen bestehen, Zentren auf nationaler und internationaler Ebene zu vernetzen. Einheitliche Ausbildungsstandards, gezielter Wissens- und Datenaustausch, sowie die Weiterentwicklung der Systeme ließen sich dadurch besser steuern. Die Schaffung von kleineren, wendigeren, HNO-spezifischen Geräten könnte im nächsten Schritt die Anwendungsmöglichkeiten erweitern und würde zu einer HNO-chirurgischen Anwendung auf breiter Basis führen.

Abstract

Since the beginning of the 21st century, surgical robots have been used in the ENT-environment. They primarily support surgeons in minimal invasive transoral operations, especially in multidisciplinary treatment concepts of head and neck tumors, but also in snoring surgery the robot provides a complement to the established transoral laser surgery. In the meantime there is a large number of data that deals with the importance of oncological results, function maintenance, economics and future perspectives.

Operation areas of the current robot devices are still limited in the ENT-environment. As the number of cases are small, efforts are being made to connect centres on a national and international level. Thus, uniform training standards, targeted knowledge and data exchange as well as further development of systems would be managed better. The creation of small and agile ENT-specific equipment could expand the possibilities as a next step for the future and finally lead to a wide scale of ENT-surgical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Literatur

  1. O’Malley BW Jr, Weinstein GS, Snyder W, et al. Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope. 2006;116(8):1465–72.

    Article  Google Scholar 

  2. Hockstein NG, O’Malley BW Jr., Weinstein GS. Assessment of intraoperative safety in transoral robotic surgery. Laryngoscope. 2006;116:165–8.

    Article  Google Scholar 

  3. Blavier A, Gaudissart Q, Cadiere GB, et al. Impact of 2D and 3D vision on performance of novice subjects using da Vinci® robotic system. Acta Chir Belg. 2006;106:662–4.

    Article  CAS  Google Scholar 

  4. Wagner OJ, Hagen M, Kurmann A, et al. Three-dimensional vision enhances task performance independently of the surgical method. Surg Endosc. 2012;26:2961–8.

    Article  CAS  Google Scholar 

  5. Mattheis S, Mandapathil M, Rothmeier N, Lang S, Dominas N, Hoffmann TK. Transorale Roboter-assistierte Chirurgie von Kopf-Hals-Tumoren: Eine Fallserie mit 17 Patienten. Laryngorhinootologie. 2012;91:768–73.

    Article  CAS  Google Scholar 

  6. Mattheis S, Hoffmann TK, Schuler PJ, Dominas N, Bankfalvi A, Lang S. The use of a flexible CO2-laser fiber in transoral robotic surgery (TORS). Laryngorhinootologie. 2014;93(10):95–9.

    CAS  PubMed  Google Scholar 

  7. Hoffmann TK, Schuler PJ, Bankfalvi A, Greve J, Heusgen L, Lang S, et al. Comparative analysis of resection tool suited for transoral robotassisted surgery. Eur Arch Otorhinolaryngol. 2014;271:1207–13.

    Article  Google Scholar 

  8. Van Der Meijden OA, Schijven MP. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surg Endosc. 2009;23:1180–90.

    Article  CAS  Google Scholar 

  9. Lang S, Mattheis S, Hasskamp P, et al. A european multicenter study evaluating the flex robotic system in transoral robotic surgery. Laryngoscope. 2016;127:391–5. https://doi.org/10.1002/lary.26358.

    Article  PubMed  Google Scholar 

  10. White H, Frederick J, Zimmerman T, et al. Learning curve for transoral robotic surgery. JAMA Otolaryngol Head Neck Surg. 2013;139(6):564–7.

    PubMed  Google Scholar 

  11. Pollei TR, et al. Analysis of postoperative bleeding and risk factors in transoral surgery of the oropharynx. JAMA Otolaryngol Head Neck Surg. 2013;139:1212–8.

    Article  Google Scholar 

  12. Mandal R, Duvvuri U, Ferris R, et al. Analyis of post-transoral robotic-assisted surgery hemorrhage: frequency, outcomes and prevention. Head Neck. 2016; https://doi.org/10.1002/HED.24101.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Steiner W. Experience in endoscopic laser surgery of malignant tumours of the upper aerodigestive tract. Adv Otorhinolaryngol. 1988;39:135–44.

    CAS  PubMed  Google Scholar 

  14. Steiner W. Endoskopische Laserchirurgie der oberen Luft- und Speidewege. Schwerpunkt Tumorchirurgie. Stuttgart, New York: Thieme; 1997.

    Google Scholar 

  15. Sethia R, Yumusakhuylu AC, Ozbay I, et al. Quality of life outcomes of transoral robotic surgery with or without adjuvant therapy for oropharyngeal cancer. Laryngoscope. 2019;128(2):403–11.

    Article  Google Scholar 

  16. Choby GW, Kim J, Ling DC, et al. Transoral robotic surgery alone for oropharyngeal cancer: quality-of-life outcomes. JAMA Otolaryngol Head Neck Surg. 2015;141(6):499–504.

    Article  Google Scholar 

  17. Lörincz B, Jowett N, Knecht R. Decision management in transoral robotic surgery: indications, individual patient selection and role ind the multidisciplinary treatment for head and neck cancer from an European perspective. Head Neck. 2016;38:E2190–E6.

    Article  Google Scholar 

  18. Nichols AC, Theurer J, Prisman E, et al. Radiotherapie versus transoral robotic surgery and neck dissection for oropharyngeal squamous cell carcinoma (ORATOR): an open-label, phase 2, randomized trial. Lancet Oncol. 2019;20(10):1349–59.

    Article  CAS  Google Scholar 

  19. Winter SC, Ofo E, Meikle D, et al. Trans-oral robotic assisted tongue base mucosectomy for investigation of cancer of unknown primary in the head and neck region. The UK experience. Clin Otolaryngol. 2017;42(6):1247–51. https://doi.org/10.1111/coa.12860.

    Article  CAS  PubMed  Google Scholar 

  20. Fu TS, Foreman A, Goldstein DP, de Almeida JR. The role of transoral robotic surgery, transoral laser microsurgery, and lingual tonsillectomy in the identification of head and neck squamous cell carcinoma of unknown primary origin: a systematic review. J Otolaryngol Head Neck Surg. 2016;45(1):28. https://doi.org/10.1186/s40463-016-0142-6.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Farooq S, Khandavilli S, Dretzke J, et al. Transoral tongue base mucosectomy for the identification of the primary site in the work-up of cancers of unknown origin: systematic review and meta-analysis. Oral Oncol. 2019;91(018):97–106. https://doi.org/10.1016/j.oraloncolo.

    Article  PubMed  Google Scholar 

  22. Hatten K, O’Malley B Jr, Bur A, et al. Transoral robotic surgery-assisted endoscopy with primary site detection and treatment in occult mucosal primaries. JAMA Otolaryngol Head Neck Surg. 2017;143(3):267–73.

    Article  Google Scholar 

  23. Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med. 2002;165:1217–39.

    Article  Google Scholar 

  24. Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K, et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med. 2017;13(3):479–504. https://doi.org/10.5664/jcsm.6506. PMID: 28162150; PMCID: PMC5337595.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hybášková J, Jor O, Novák V, Zeleník K, Matoušek P, Komínek P. Drug-induced sleep endoscopy changes the treatment concept in patients with obstructive sleep apnoea. Biomed Res Int. 2016;2016:6583216. https://doi.org/10.1155/2016/6583216. PMID: 28070516; PMCID: PMC5192321.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Di Venere D, Corsalini M, Nardi GM, Laforgia A, Grassi FR, Rapone B, et al. Obstructive site localization in patients with Obstructive Sleep Apnea Syndrome: a comparison between otolaryngologic data and cephalometric values. Oral Implantol (Rome). 2017;10(3):295–310. https://doi.org/10.11138/orl/2017.10.3.295. PMID: 29285333; PMCID: PMC5735389.

    Article  Google Scholar 

  27. Powell NB. Contemporary surgery for obstructive sleep apnea syndrome. Clin Exp Otorhinolaryngol. 2009;2(3):107–14. https://doi.org/10.3342/ceo.2009.2.3.107. PMID: 19784401; PMCID: PMC2751873.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rotenberg BW, Murariu D, Pang KP. Trends in CPAP adherence over twenty years of data collection: a flattened curve. J Otolaryngol Head Neck Surg. 2016;45(1):43–19. https://doi.org/10.1186/s40463-016-0156-0. PMID: 27542595; PMCID: PMC4992257.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vicini C, Montevecchi F, Gobbi R, et al. Transoral robotic surgery for obstructive sleep apnoe syndrome: principles and technique. World J Otorhinolaryngol Head Neck Surg. 2017; https://doi.org/10.1016/j.wjorl.2017.05.003.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vicini C, Hoff PT, Montevecchi F, Hrsg. Transoral robotic surgery for obstructive sleep apnea: a practical guide to surgical approach and patient management. Cham: Springer; 2016.

    Google Scholar 

  31. Glazer TA, Hoff PT, Spector ME. Transoral robotic surgery for obstructive sleep apnea: perioperative management and postoperative complications. JAMA Otolaryngol Head Neck Surg. 2014;140(12):1207–12. https://doi.org/10.1001/jamaoto.2014.2299.

    Article  PubMed  Google Scholar 

  32. Satava RM, Stefanidis D, Levy JS, et al. Proving the effectiveness of the fundamentals of robotic surgery (FRS) skills curriculum: a single-blinded, multispecialty, multi-institutional randomized control trial. Ann Surg. 2019; https://doi.org/10.1097/SLA.0000000000003220.

    Article  Google Scholar 

  33. White HN, Frederick J, Zimmerman T, Caroll WR, Magnuson JS. Learning curve for transoral robotic surgery: a 4‑year anaysis. JAMA Otolaryngol Head Neck Surg. 2013;269(8):1979–84.

    Google Scholar 

  34. Intuitivesurgical annual report. http://www.annualreports.com/HostedData/AnnualReports/PDF/NASDAQ_ISRG_2019.pdf. Zugegriffen: 05.07.2021.

  35. Intuitivesurgical. https://www.presseportal.de/pm/135649/4445520. Zugegriffen: 05.07.2021.

  36. Spellman J, Coulter M, Kawatkar A, et al. Comperative cost of transoral robotic surgery and radiotherapy (IMRT) in early stage tonsil cancer. Am J Otolaryngol. 2020;41(3):102409.

    Article  Google Scholar 

  37. de Almeida JR, Moskowitz A, Miles B, et al. Cost-effectiveness of transoral robotic surgery versus (chemo)radiotherapy for early T classification oropharyngeal carcinoma: a cost-utility analysis. Head Neck. 2016;38:589–600. https://doi.org/10.10002/HED.23930.

    Article  PubMed  Google Scholar 

  38. Stock K, Stegmayer T, Graser R, et al. Comparison of different focusing fiber tips for improved oral diode laser surgery. Lasers Surg Med. 2012;44:815–23.

    Article  Google Scholar 

  39. Hoffmann TK, Friedrich DT, Schuler PJ. Robotergestützte Chirurgie im Kopf-Hals-Bereich [Robot-assisted surgery in the head and neck region]. HNO. 2016;64(9):658–66. https://doi.org/10.1007/s00106-016-0219-6.

    Article  CAS  PubMed  Google Scholar 

  40. Strauss G, Hofer M, Kehrt S, et al. Manipulator assisted endoscope guidance in functional endoscopic sinus surgery: proof of concept. HNO. 2007;55:177–84.

    Article  CAS  Google Scholar 

  41. Trevillot V, Garrel R, Dombre E, et al. Robotic endoscopic sinus and skull base surgery: review of the literature and future prospects. Eur Ann Otorhinolaryngol Head Neck Dis. 2013;130:201–7.

    Article  CAS  Google Scholar 

  42. Burgner-Kahrs J, Rucker DC, Choset H. Continuum robots for medical applications: a survey. IEEE Trans Robot. 2015;31:1261–80.

    Article  Google Scholar 

  43. Vicini C, Montevecchi F, D’Agostino G, De Vito A, Meccariello G. A novel approach emphasising intra-operative superficial margin enhancement of head-neck tumours with narrow-band imaging in transoral robotic surgery. Acta Otorhinolaryngol Ital. 2015;35(3):157–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lawson G, Matar N, Remacle M, Jamart J, Bachy V. Transoral robotic surgery for the management of head and neck tumors: learning curve. Eur Arch Otorhinolaryngol. 2011;268(12):1795–801.

    Article  Google Scholar 

  45. Weinstein GS, O’Malley BW Jr, Snyder W, Sherman E, Quon H. Transoral robotic surgery: radical tonsillectomy. Arch Otolaryngol Head Neck Surg. 2007;133(12):1220–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christoph Winkler or Andreas Strobl.

Ethics declarations

Interessenkonflikt

C. Winkler, A. Strobl, T. J. Schmal, M. Hartl, M. Burian und M. Formanek geben an, dass kein Interessenkonflikt besteht.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

C. Winkler und A. Strobl haben zu gleichen Teilen zum Manuskript beigetragen.

These both authors contributed equally to this work.

Aus Gründen der leichteren Lesbarkeit wird in diesem Artikel die männliche Sprachform verwendet, auch wenn Angehörige aller Geschlechter gemeint sind.

Only for better readability the male form is used in this article. It is assumed that this refers to all genders on equal terms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, C., Strobl, A., Schmal, T.J. et al. Bedeutung der transoralen robotischen Chirurgie in der HNO. Wien Med Wochenschr 172, 20–30 (2022). https://doi.org/10.1007/s10354-021-00865-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-021-00865-3

Schlüsselwörter

Keywords

Navigation