Skip to main content

Advertisement

Log in

Skeletal dissolution kinetics and mechanical tests in response to morphology among coral genera

  • Original Paper
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Ocean acidification is widely accepted as a primary threat to coral reef populations. Negative physiological effects include decreased calcification rates, heightened metabolic energy expenditure, and increased dissolution of coral skeletons. However, studies on the dissolution of coral skeletons structures under ocean acidification conditions and their implications on sediments remain scarce. In this work, we examined skeletal dissolution kinetics from four of the most representative hermatypic corals of the Eastern Pacific coasts (Pocillopora, Porites, Pavona, and Psammocora). Samples were treated with a highly acidic solution for defined periods of time, and measurements of dissolved calcium ([Ca+2]) were used to evaluate the kinetics of coral skeleton dissolution. All genera tests except Porites showed a zero reaction rate. Porites exhibited a first-order reaction and a faster reaction rate than other genera. Compression strength tests and skeletal density did not correlate with reaction rate. Pavona showed greater structural strength. Porites were the most susceptible to acidic dissolution compared to other genera tested due to their morphology, i.e., possession of the largest surface area, suggesting a high vulnerability under low-pH conditions. The hierarchical response in dissolution kinetics among coral genera tested suggests that the most soluble coral might act as a buffer under ocean acidification conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aissaoui DM, Buigues D, Purser BH (1986) Model of reef diagenesis: Mururoa Atoll, French Polynesia. In: Schroeder JH, Purser BH (eds) Reef Diagenesis. Springer, Berlin. doi:10.1007/978-3-642-82812-6

  • Alvarez K, Camero Alarcón ME, Rivas A, González G (2002) Physical and mechanical properties evaluation of Acropora palmata coralline species for bone substitution applications. J Mater Sci Mater Med 13(5):509–515. doi:10.1023/A:1014787209506

    Article  Google Scholar 

  • Andersson AJ (2015) A fundamental paradigm for coral reef carbonate sediment dissolution. Front Mar Sci 2:52. doi:10.3389/fmars.2015.00052

    Article  Google Scholar 

  • Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Ann Rev Mar Sci 5:321–348. doi:10.1146/annurev-marine-121211-172241

    Article  Google Scholar 

  • Andersson AJ, Mackenzie FT, Ver LM (2003) Solution of shallow-water carbonates: an insignificant buffer against rising atmospheric CO2. Geology 31:513–516. doi:10.1130/0091-7613(2003)031<0513:SOSCAI>2.0.CO;2s

    Article  Google Scholar 

  • Brantley SL, Kubicki JD, White AF (2008) Kinetics of water-rock interaction. Springer, New York. doi:10.1007/978-0-387-73563-4

    Book  Google Scholar 

  • Bucher DJ, Harriott VJ, Roberts LG (1998) Skeletal micro-density, porosity and bulk density of acroporid corals. J Exp Mar Biol Ecol 228:117–136. doi:10.1016/S0022-0981(98)00020-3

    Article  Google Scholar 

  • Carricart-Ganivet JP, Barnes DJ (2007) Densitometry from digitized images of X-radiographs: methodology for measurement of coral skeletal density. J Exp Mar Biol Ecol 344:67–72. doi:10.1016/j.jembe.2006.12.018

    Article  Google Scholar 

  • Castro R, Durazo R, Mascarenhas A, Collins CA, Trasviña A (2006) Thermohaline variability and geostrophic circulation in the southern portion of the Gulf of California. Deep Sea Res Part I 53(1):188–200. doi:10.1016/j.dsr.2005.09.010

    Article  Google Scholar 

  • Castro-Ceseña A, Novitskaya E, Chen PY, Hirata G, Mckittrick J (2011) Kinetic studies of bone demineralization at different HCl concentrations and temperatures. Mater Sci Eng C 31:523–530. doi:10.1016/j.msec.2010.11.003

    Article  Google Scholar 

  • Chalker B, Barnes D (1990) Gamma densitometry for the measurement of skeletal density. Coral Reefs 9:11–23. doi:10.1007/BF00686717

    Article  Google Scholar 

  • Chalker B, Barnes D, Isdale P (1985) Calibration of X-ray densitometry for the measurement of coral skeletal density. Coral Reefs 4:95–100. doi:10.1007/BF00300867

    Article  Google Scholar 

  • Chamberlain Jr JA (1978) Mechanical properties of coral skeleton: compressive strength and its adaptive significance. Paleobiology 4:419–435

    Article  Google Scholar 

  • Chang R (2007) Chemistry, 9th edn. McGraw-Hill, New York

    Google Scholar 

  • Chave KE, Smith SV, Roy KJ (1972) Carbonate production by coral reefs. Mar Geol 12:123–140

    Article  Google Scholar 

  • Comeau S, Carpenter RC, Lantz CA, Edmunds PJ (2015) Ocean acidification accelerates dissolution of experimental coral reef communities. Biogeosciences 12:365–372. doi:10.5194/bg-12-365-2015

    Article  Google Scholar 

  • Constantz BR (1986) The primary surface area of corals and variations in their susceptibility to diagenesis. In: Schroeder JH, Purser BH (eds) Reef Diagenesis. Springer, Berlin. doi:10.1007/978-3-642-82812-6

  • Cortés J, Enochs IC, Sibaja-Cordero J, Hernández L, Alvarado JJ, Breedy O, Cruz-Barraza JA, Esquivel-Garrote O, Fernández-García C, Hermosillo A, Kaiser KL, Medina-Rosas P, Morales-Ramírez A, Pacheco C, Pérez-Matus A, Reyes-Bonilla H, Riosmena-Rodríguez R, Sánchez-Noguera C, Wieters EA, Zapata FA (2017) Marine Biodiversity of Eastern Tropical Pacific Coral Reefs. In: Glynn PW, Manzello DP, Enochs IC (eds), Coral Reefs of the Eastern Tropical Pacific, Persistence and Loss in a Dynamic Environment. Springer, pp 203–250. doi:10.1007/978-94-017-7499-4

  • Currey JD (1988) The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech 21:131–139

    Article  Google Scholar 

  • Currey JD (1990) Physical characteristics affecting the tensile failure properties of compact bone. J Biomech 23(8):837. doi:10.1016/0021-9290(90)90030-7

    Article  Google Scholar 

  • Dodge RE, Szmant AM, Garcia R, Swart PK, Forester A, Leder JJ (1993) Skeletal structure basis of density banding in the reef coral Montastrea annularis. Proceedings of the 7th International Coral Reef Symposium, 1. pp 186–195

  • Eyre BD, Andersson AJ, Cyronak T (2014) Benthic coral reef calcium carbonate sediment dissolution in an acidifying ocean. Nat Clim Chang 4:969–976. doi:10.1038/NCLIMATE2380

    Article  Google Scholar 

  • Franco AC, Hernandez-Ayon JM, Beier E, Garcon V, Maske H, Paulmier A, Farber-Lorda J, Castro R, Sosa-Avalos R (2014) Air-sea CO2 fluxes above the stratified oxygen minimum zone in the coastal region off Mexico. J Geophys Res Oceans 119(5):2923–2937. doi:10.1002/2013jc009337

    Article  Google Scholar 

  • Gautret P, Cuif JP, Stolarski J (2000) Organic components of the skeleton of scleractinian corals-evidence from in situ acridine orange staining. Acta Palaeontol Pol 45(2):107–118

    Google Scholar 

  • Glynn PW, Alvarado JJ, Banks S, Cortés J, Feingold JS, Jiménez C, Maragos JE, Martínez P, Maté JL, Moanga DA, Navarrete S, Reyes-Bonilla H, Riegl B, Rivera F, Vargas-Ángel B, Wieters EA, Zapata FA (2017) Eastern Pacific Coral Reef Provinces, Coral Community Structure and Composition: An Overview. In: Glynn PW, Manzello DP, Enochs IC (eds), Coral Reefs of the Eastern Tropical Pacific Persistence and Loss in a Dynamic Environment. Springer, pp 107–176. doi:10.1007/978-94-017-7499-4

  • Harney JN, Fletcher III CH (2003) A budget of carbonate framework and sediment production, Kailua Bay, Oahu, Hawaii. J Sediment Res 73:856–868

    Article  Google Scholar 

  • Henrich R, Wefer G (1986) Dissolution of biogenic carbonates: effects of skeletal structure. Mar Geol 71:341–362

    Article  Google Scholar 

  • Holcomb M, Cohen AL, Gabitov RI, Hutter JL (2009) Compositional and morphological features of aragonite precipitated experimentally from seawater and biogenically by corals. Geochim Cosmochim Acta 73:4166–4179. doi:10.1016/j.gca.2009.04.015

    Article  Google Scholar 

  • Jimenez C, Cortes J (1993) Density and compressive strength of the coral Siderastrea siderea (Scleractinia: Siderastreidae): intraspecific variability. Rev Biol Trop 41:39–43

    Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120. doi:10.1126/science.284.5411.118

    Article  Google Scholar 

  • Laine J, Labady M, Albornoz A, Yunes S (2008) Porosities and pore sizes in coralline calcium carbonate. Mater Charact 59:1522–1525. doi:10.1016/j.matchar.2007.12.002

    Article  Google Scholar 

  • Manzello DP, Eakin CM and Glynn PW (2017) Effects of global warming and ocean acidification on carbonate budgets of Eastern Pacific coral reefs. In: Glynn PW, Manzello DP, Enochs IC (eds) Coral Reefs of the Eastern Tropical Pacific Persistence and Loss in a Dynamic Environment. Springer, pp 517–533. doi:10.1007/978-94-017-7499-4

  • Marshall JF (1986) Regional distribution of submarine cements within an epicontinental reef system: Central Great Barrier Reef, Australia. In: Schroeder JH, Purser BH (eds) Reef Diagenesis. Springer, Berlin. doi:10.1007/978-3-642-82812-6

  • Masel RI (2001) Chemical kinetics and catalysis, 1st edn. Wiley-Interscience, New York

    Google Scholar 

  • Morse JW, Arvidson RS, Lüttge A (2007) Calcium carbonate formation and dissolution. Chem Rev 107:342–381. doi:10.1021/cr050358j

    Article  Google Scholar 

  • Muehllehner N, Langdon C, Venti A, Kadko D (2016) Dynamics of carbonate chemistry, production, and calcification of the Florida Reef Tract (2009–2010): Evidence for seasonal dissolution. Glob Biogeochem Cycles 30:1. doi:10.1002/2015GB005327

    Article  Google Scholar 

  • Nothdurft LD, Webb GE (2007) Microstructure of common reef-building coral genera Acropora, Pocillopora, Goniastrea and Porites: constraints on spatial resolution in geochemical sampling. Facies 53:1–26. doi:10.1007/s10347-006-0090-0

    Article  Google Scholar 

  • Novitskaya E, Chen PY, Lee S, Castro-Ceseña AB, Hirata G, Lubarda VA, Mckittrick J (2011) Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Acta Biomater 7:3170–3177. doi:10.1016/j.actbio.2011.04.025

    Article  Google Scholar 

  • Plummer LN, Busenberg E (1982) The solubilities of calcite, aragonite and vaterite in CO2–H2O solutions between 0 and 90  C, and an evaluation of the aqueous model for the system CaCO3–CO2–H2O. Geochim Cosmochim Acta 46:1011–1040. doi:10.1016/0016-7037(82)90056-4

    Article  Google Scholar 

  • Reyes-Bonilla H, Calderon-Aguilera LE, Cruz-Piñon G, Medina-Rosas P, López-Pérez RA, Herrero-Pérezrul MD, Leyte-Morales GE, Cupul-Magaña AL and Carriquiry JD (2005) Atlas de los corales pétreos (Anthozoa: Scleractinia) del Pacífico Mexicano. Centro de Investigación Científica y de Educación Superior de Ensenada, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Consejo Nacional de Ciencia y Tecnología, Universidad de Guadalajara-Centro Universitario de la Costa, Universidad del Mar, Ensenada, pp 124

  • Riegl B, Halfar J, Purkis SJ, Godinez-Orta L (2007) Sedimentary facies of the eastern Pacific’s northernmost reef-like setting (Cabo Pulmo, Mexico). Mar Geol 236:61–77

    Article  Google Scholar 

  • Rodríguez-Zaragoza FA, Cupul-Magaña AL, Galván-Villa CM, Rios-Jara E, Robles-Jarero EG, Lopez-Uriarte E, Arias-Gonzalez JE (2011) Additive partitioning of reef fish diversity variation: a promising marine biodiversity management tool. Biodivers Conserv 20(8):1655–1675. doi:10.1007/s10531-011-0053-9

    Article  Google Scholar 

  • Schroeder JH, Purser BH (1986) Reef diagenesis: introduction. In: Schroeder JH, Purser BH (eds), Reef diagenesis. Springer, Berlin. doi:10.1007/978-3-642-82812-6

  • Shivaram A, Bose S, Bandyopadhyay A (2014) Compressive deformation behaviour of coral Porites Cylindrica. Mater Lett 133:155–157

    Article  Google Scholar 

  • Smith SV (2013) Parsing the oceanic calcium carbonate cycle: a net atmospheric carbon dioxide source, or a sink? L&O e-Books. Association for the Sciences of Limnology and Oceanography (ASLO) Waco. doi:10.4319/svsmith.2013.978-0-9845591-2-1

  • Snoeyink VL, Jenkins D (1980) Water Chemistry, 1st edn. Wiley, New York

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters. Wiley, New York

    Google Scholar 

  • Tambutté E, Venn A, Holcomb M, Segonds N, Techer N, Zoccola D, Allemand D, Tambutté S (2015) Morphological plasticity of the coral skeleton under CO2-driven seawater acidification. Nat Commun 6:7368. doi:10.1038/ncomms8368

    Article  Google Scholar 

  • Tortolero-Langarica JJA, Cupul-Magaña AL, Rodríguez-Troncoso AP (2014) Restoration of a degraded coral reef using a natural remediation process: A case study from a Central Mexican Pacific National Park. Ocean Coast Manag 96:12–19. doi:10.1016/j.ocecoaman.2014.04.020

    Article  Google Scholar 

  • Tortolero-Langarica JJA, Cupul-Magaña AL, Carricart-Ganivet JP, Mayfield AB, Rodríguez-Troncoso AP (2016) Differences in growth and calcification rates in the reef-building coral Porites lobata: The implications of morphotype and gender on coral growth. Front Mar Sci 3:179. doi:10.3389/fmars.2016.00179

    Article  Google Scholar 

  • Tribble GW (1993) Organic matter oxidation and aragonite diagenesis in a coral reef. J Sediment Petrol 63:523–527. doi:10.1306/D4267B45-2B26-11D7-8648000102C1865D

    Google Scholar 

  • Van Woesik R, Van Woesik K, Van Woesik L, Van Woesik S (2013) Effects of ocean acidification on the dissolution rates of reef-coral skeletons. PeerJ 1:e208. doi:10.7717/peerj.208

    Article  Google Scholar 

  • Veal C, Carmi M, Fine M, Hoegh-Guldberg O (2010) Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs 29:893–897

    Article  Google Scholar 

  • Veron JEN (2000) Corals of the world. In: Stafford-Smith M (ed), Australian Institute of Marine Science, Townsville. p 1382

  • Wallace CC, Rosen BR (2006) Diverse staghorn corals (Acropora) in high-latitude Eocene assemblages: implications for the evolution of modern diversity patterns of reef corals. Proc R Soc B 273:975–982. doi:10.1098/rspb.2005.3307

    Article  Google Scholar 

  • Walter LM, Morse JW (1984) Reactive surface area of skeletal carbonates during dissolution: effect of grain size. J Sediment Res 54:4. doi:10.1306/212F8562-2B24-11D7-8648000102C1865D

    Google Scholar 

  • Wells JW (1956) Scleractinia. In: Moore RC (ed) Treatise on Invertebrate Paleontology. Geological Society of America and University Kansas Press, Westbrooke Cir, pp 328–440

    Google Scholar 

  • Wu YC, Lee TM, Chiu KH, Shaw SY, Yang CY (2009) A comparative study of the physical and mechanical properties of three natural corals based on the criteria for bone-tissue engineering scaffolds. J Mater Sci Mater Med 20:1273–1280. doi:10.1007/s10856-009-3695-3

    Article  Google Scholar 

Download references

Acknowledgements

This project was partially funded by Consejo Nacional de Ciencia y Tecnología (CONACYT) Ref. 023390 to Luis Eduardo Calderon Aguilera. We are grateful to I. Gradilla (UNAM) for SEM images, Mario Vega (CICESE) for IPC measurements, and Héctor Reyes-Bonilla (UABCS) for providing coral samples and useful comments. We also thank the two anonymous reviewers for their helpful comments. We also thank to A. Zirino and S. V. Smith for their comments and suggestions for improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orión C. Norzagaray-López.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norzagaray-López, O.C., Calderon-Aguilera, L.E., Castro-Ceseña, A.B. et al. Skeletal dissolution kinetics and mechanical tests in response to morphology among coral genera. Facies 63, 7 (2017). https://doi.org/10.1007/s10347-016-0488-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-016-0488-2

Keywords

Navigation