Abstract
The uppermost Rhaetian Adnet reef is part of the Dachstein carbonate platform and is situated at the transition to the intrashelf Kössen Basin. Its diagenetic evolution is investigated focusing on dissolution cavities in the Tropfbruch quarry of Adnet (near Salzburg) stratigraphically situated immediately below the Triassic–Jurassic boundary. Sea-level changes due to global eustatic trends and regional tectonics are assumed to be the controlling factors in the development of a manifold diagenetic sequence characterized by phases of meteoric dissolution, marine and burial cementation, and internal sedimentation. Despite small-scale variations of the sequence, a superordinate pattern of diagenetic phases could be elaborated. Small-scale eustatic sea-level falls subordinate to a global regression trend caused subaerial exposures of the Adnet reef in the latest Rhaetian to earliest Hettangian. The result was karstification and meteoric dissolution of aragonitic coral skeletons (Retiophyllia) leading to the formation of biomoldic porosity. Coral septa which escaped dissolution were transformed into neomorphic calcite spar under meteoric–phreatic conditions. A first generation of dog-tooth cements precipitated sporadically on the altered coral skeletons. Eustatic sea-level rise in Early to Mid-Hettangian times caused a renewed flooding of the pore space of the Adnet reef by marine water and the influx of a first generation of internal sediments (IS I), derived from the karstified host rock of the Upper Rhaetian reef limestone. These internal sediments are overgrown by radiaxial-fibrous calcites (RFCs) whose oxygen-isotopic signature (δ18O = −1.3 (±0.7)‰) indicates precipitation in deeper (colder) water (18–21°C) due to a first phase of drowning. An intermediate phase of eustatic sea-level lowstand in the Late Hettangian is expressed by dissolution and corrosion of RFCs. Rapid drowning of the Dachstein carbonate platform due to eustatic sea-level rise and tectonic movements took place in the Early Sinemurian and a second generation of internal sediments (IS II) derived from the Lower Sinemurian Adnet Formation is washed into the dissolution cavities. Where IS II is absent, RFCs are overgrown by a second generation of dog-tooth cements with a bright-luminescent outer rim indicating the transition to negative redox conditions in the pore water during shallow burial. Burial diagenesis is represented by blocky calcite cements which occlude the remaining pore space. Depleted oxygen-isotope values and significant Fe contents indicate precipitation under reducing redox conditions and elevated temperatures of 30–50°C at burial depths of 420–870 m. Locally, replacive saddle dolomite is the latest diagenetic phase in the Adnet reef indicating crystallization under hydrothermal influences related to compressional subduction regimes of the Penninic Ocean.










Similar content being viewed by others
References
Bernecker M, Weidlich O, Flügel E (1999) Response of Triassic reef coral communities to sea-level fluctuations, storms and sedimentation: evidence from a spectacular outcrop (Adnet, Austria). Facies 40:229–280
Böhm F (1992) Mikrofazies und Ablagerungsmilieu des Lias und Dogger der Nordöstlichen Kalkalpen. Erl Geol Abh 121:57–217
Böhm F, Ebli O, Krystyn L, Lobitzer H, Rakús M, Siblík M (1999) Fauna, Biostratigraphie und Sedimentologie des Hettang und Sinemur (Unterlias) von Adnet, Salzburg, Österreich). Abh Geol Bundesanst 56:143–271
Drever JI (1982) The geochemistry of natural waters. Prentice Hall, New Jersey, p 288
Fischer AG (1964) The Lofer cyclothems of the Alpine Triassic. In: Merriam DF (ed) Symposium on cyclic sedimentation. Kansas Geol Surv Bull 169:107–149
Flügel E, Koch R (1995) Controls on the diagenesis of Upper Triassic carbonate ramp sediments: Steinplatte, Northern Alps (Austria). Geol Paläont Mitt Innsbruck 20:283–311
Flügel E, Tietz G-F (1971) Über die Ursachen der Buntfärbung in Oberrhät-Riffkalken (Adnet, Salzburg). N Jb Geol Paläont Abh 139:29–42
Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer M (ed) Data of geochemistry (6th edn), US Geol Surv, Prof Pap 440(K):1–12
Garrison RE, Fischer AG (1969) Deep water limestones and radiolarites of the Alpine Jurassic. In: Friedman GM (ed) Depositional environments of carbonate rocks. SEPM Spec Publ 14:20–56
Given RK, Wilkinson BH (1985) Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates. J Sed Petrol 55:109–119
Gregg JM (1983) On the formation and occurrence of saddle dolomite–discussion. J Sed Petrol 53:1025–1033
Haas J (1991) A basic model for Lofer cycles. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 722–732
Hallam A (1988) A reevaluation of Jurassic eustasy in the light of new data and the revised Exxon curve. In: Wilgus CK, Hastings BS, Kendall CGStC, Posamentier HW, Ross CA, Van Wagoner JC (eds) Sea-level changes: an integrated approach. SEPM Spec Publ 42:261–273
Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In: Wilgus CK, Hastings BS, Kendall CGStC, Posamentier HW, Ross CA, Van Wagoner JC (eds) Sea-level changes: an integrated approach. SEPM Spec Publ 42:71–108
Hays PD, Grossman EL (1991) Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate. Geol 19:441–444
Hurley NF, Lohmann KC (1989) Diagenesis of Devonian reefal carbonates in the Oscar Range, Canning Basin, Western Australia. J Sed Petrol 59:127–146
Irwin H, Curtis CD, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269:209–213
Kaufmann B (1997) Diagenesis of Middle Devonian carbonate mounds of the Mader Basin (eastern Anti-Atlas, Morocco). J Sed Res A67:945–956
Kerans C, Hurley NF, Playford PE (1986) Marine diagenesis in Devonian reef complexes of the Canning Basin, Western Australia. In: Schroeder JH, Purser BH (eds) Reef diagenesis. Springer, Berlin, pp 358–380
Kleypas JA, McManus JW, Meñez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159
Korte C, Kozur HW, Veizer J (2005) δ13C and δ18O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature. Palaeogeogr Palaeoclimatol Palaeoecol 226:287–306
Kramer H, Kröll A (1979) Die Untersuchungsbohrung Vigaun U 1 bei Hallein in den Salzburger Kalkalpen. Mitt österreich geol Ges 70:1–10
Krystyn L, Böhm F, Kürschner W, Delecat S (2005) The Triassic–Jurassic boundary in the Northern Calcareous Alps. 5th Field Workshop IGCP 458 Project, A:1–39
Kuerschner WM, Nina R, Bonis NR, Krystyn L (2007) Carbon-isotope stratigraphy and palynostratigraphy of the Triassic–Jurassic transition in the Tiefengraben section: Northern Calcareous Alps (Austria). Palaeogeogr Palaeoclimatol Palaeoecol 244:257–280
Lackschewitz KS, Grützmacher U, Henrich R (1991) Paleoceanography and rotational block faulting in the Jurassic carbonate series of the Chiemgau Alps (Bavaria). Facies 24:1–24
Lavoie D, Bourque P-A (1993) Marine, burial, and meteoric diagenesis of Early Silurian carbonate ramps, Quebec Appalachians. Can J Sed Petrol 63:233–247
Mandl GW (2000) The Alpine sector of the Tethyan shelf: examples of Triassic to Jurassic sedimentation and deformation from the Northern Calcareous Alps. Mitt Österreich Geol Ges 92:61–77
Marcoux J, Baud A, Ricou L-E, Gaetani M, Krystyn L, Bellion Y, Guiraud R, Besse J, Gallet Y, Jaillard E, Moreau C, Theveniaut H (1993) Late Norian (215–212 Ma). In: Dercourt J, Ricou LE, Vrielynck B (eds) Atlas Tethys palaeoenvironmetal maps, explanatory notes. Gauthier-Villars, Paris, pp 35–53
Mazzullo SJ, Bischoff WD, Lobitzer H (1990) Diagenesis of radiaxial fibrous calcites in a subunconformity, shallow-burial setting: Upper Triassic and Liassic, Northern Calcareous Alps, Austria. Sedimentology 37:407–425
Mirsal IA, Zankl H (1979) Petrography and geochemistry of carbonate void-filling cements in fossil reefs. Geol Rundsch 68:920–951
O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558
Pálfy J (2008) The quest for refined calibration of the Jurassic time-scale. Proc Geol Assoc 119:85–95
Piller WE (1981) The Steinplatte reef complex, part of an Upper Triassic carbonate platform near Salzburg, Austria. In: Toomey DF (ed) European fossil reef models. SEPM Spec Publ 30:261–290
Plöchinger B (1990) Geologische Karte der Republik Österreich. Erläuterungen zu Blatt 94 Hallein. Geol Bundesanst, pp 1–79
Radke RM, Mathis RL (1980) On the formation of saddle dolomite. J Sed Petrol 50:1149–1168
Reinhold C (1999) Dog-tooth cements: indicators of different diagenetic environments. Zbl Geol Paläont Teil I 1997:1221–1235
Stanton RJ Jr, Flügel E (1989) Problems with reefs models: the late Triassic Steinplatte “reef” (Northern Alps, Salzburg/Tyrol, Austria). Facies 20:1–138
Satterley AK, Marshall JD, Fairchild IJ (1994) Diagenesis of an Upper Triassic reef complex, Wilde Kirche, Northern Calcareous Alps, Austria. Sedimentology 41:935–950
Schäfer P (1979) Fazielle Entwicklung und palökologische Zonierung zweier obertriadischer Riffstrukturen in den nördlichen Kalkalpen (Oberrhät-Riff-Kalke, Salzburg). Facies 1:3–245
Smart PL, Whitaker FF (1991) Karst processes, hydrology, and porosity evolution. In: Wright VP (ed) Palaeokarsts and palaeokarstic reservoirs. Postgrad Res Inst Sed Occ Publ Ser 2, pp1–55
White WP (1984) Rate processes: chemical kinetics and karst landform development. In: La Fleur RG (ed) Groundwater as a geomorphic agent. Oxford University Press, Oxford, pp 227–248
Wurm D (1982) Mikrofazies, Paläontologie und Palökologie der Dachsteinriffkalke (Nor) des Gosaukammes, Österreich. Facies 6:203–296
Zankl H (1969) Der Hohe Göll. Aufbau und Lebensbild eines Dachsteinkalk-Riffes in den Nördlichen Kalkalpen. Abh Senckenberg Naturforsch Ges 519:1–123
Zankl H (1971) Upper Triassic carbonate facies in the Northern Limestone Alps. In: Müller G (ed) Sedimentology of parts of Central Europe, Guidebook VIII. Int Sed Congr, pp 147–185
Acknowledgments
Johannes H. Schroeder (Berlin) initiated this study, acted as supervisor, and has raised funds from the Deutsche Forschungsgemeinschaft (DFG) (project Schr 257/4-1). The project was performed within the scope of the DFG priority program “Globale und regionale Steuerungsprozesse biogener Sedimentation, Themenkreis 1: Riff Evolution”. Technical help (thin sections) was provided by Kerstin Döbbern, Markus Stöwer, Constanze von Engelhardt, Silke Becker (all Technische Universität, Berlin) and Franz Tscherne (Graz). Francois Galbert assisted during microprobe analyses. Anselm Loges (Tübingen) helped during cathodoluminescence microscopy. Stable isotopes were analyzed by Michael M. Joachimski (Erlangen). Erik Flügel (deceased), Michaela Bernecker (Muscat, Oman), Oliver Weidlich (Wintershall, Kassel) and Heinrich Zankl (Marburg) are acknowledged for joint field works and discussions. Jobst Wendt (Tübingen) read an earlier draft of the manuscript and provided many corrections. Finally, journal reviewers Rüdiger Henrich (Bremen) and János Haas (Budapest) enormously improved the paper by contributing their experience in the geology of the Northern Calcareous Alps.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Reinhold, C., Kaufmann, B. Sea-level changes as controlling factor of early diagenesis: the reefal limestones of Adnet (Late Triassic, Northern Calcareous Alps, Austria). Facies 56, 231–248 (2010). https://doi.org/10.1007/s10347-009-0197-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10347-009-0197-1