Skip to main content

Advertisement

Log in

Dynamic process of the massive Aru glacier collapse in Tibet

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Due to global climatic warming, the possibility of collapse of polythermal glaciers is increasing. In the summer of 2016, two massive glaciers suddenly collapsed at Aru Village, Ali District, Xizang Autonomous Region, China, running out up to 7 km and killing nine herders. These events occurred suddenly in a remote area, and quantitative data about them was difficult to obtain quickly. Their seismic waves, however, could be quickly inverted to estimate the event motion parameters; the inversion results reflecting the average state. In order to have an initial judgment on the deposit range and the kinematic parameters at different positions after the collapse, seismic-wave inversions were used to estimate parameters (e.g., mass and friction coefficient) for numerical simulation to quickly simulate the motion processes that are important for the initial rescue, especially in the absence of topographic data. Numerical simulation showed that even though the shape and depth of the source area as assigned from such inversion were slightly different from the real situation, the effect on the final deposit morphology was not so great, which can be used as a reference for useful assessment after future disasters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig.6
Fig. 7
Fig.8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allstadt K (2013) Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms. J Geophys Res Earth Surf 118(3):1472–1490

    Article  Google Scholar 

  • Bai X, Jian J, He S, Liu W (2019) Dynamic process of the massive Xinmo landslide, Sichuan (China), from joint seismic signal and morphodynamic analysis. Bull Eng Geol Environ 78(5):3269–3279. https://doi.org/10.1007/s10064-018-1360-0

    Article  Google Scholar 

  • Brodsky EE, Gordeev E, Kanamori H (2003) Landslide basal friction as measured by seismic waves. Geophys Res Lett 30(24)

  • Chao WA, Zhao L, Chen SC, Wu YM, Chen CH, Huang HH (2016) Seismology-based early identification of dam-formation landquake events. Sci Rep 6:19259

    Article  Google Scholar 

  • Christen M, Kowalski J, Bartelt P (2010) RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63(1-2):1–14

    Article  Google Scholar 

  • Cole SE, Cronin SJ, Sherburn S, Manville V (2009) Seismic signals of snow‐slurry lahars in motion: 25 September 2007, Mt Ruapehu, New Zealand. Geophys Res Lett 36:L09405. https://doi.org/10.1029/2009GL038030

    Article  Google Scholar 

  • Davies TR, McSaveney MJ (2002) Dynamic simulation of the motion of fragmenting rock avalanches. Can Geotech J 39(4):789–798

    Article  Google Scholar 

  • Davies TR, McSaveney MJ, Hodgson KA (1999) A fragmentation-spreading model for long-runout rock avalanches. Can Geotech J 36(6):1096–1110

    Article  Google Scholar 

  • Duan A, Xiao Z (2015) Does the climate warming hiatus exist over the Tibetan Plateau? Sci Rep 5:13711. https://doi.org/10.1038/srep13711

    Article  Google Scholar 

  • Dufresne A, Wolken GJ, Hibert C et al (2019) The 2016 Lamplugh rock avalanche Alaska: deposit structures and emplacement dynamics. Landslides 1–19. https://doi.org/10.1007/s10346-019-01225-4.

  • Ekström G, Stark CP (2013) Simple scaling of catastrophic landslide dynamics. Science 339(6126):1416–1419

    Article  Google Scholar 

  • Favreau P, Mangeney A, Lucas A, Crosta G, Bouchut F (2010) Numerical modeling of landquakes. Geophys Res Lett 37(15)

  • Fischer JT, Kowalski J, Pudasaini SP (2012) Topographic curvature effects in applied avalanche modeling. Cold Reg Sci Technol 74:21–30

    Article  Google Scholar 

  • Fukao Y (1995) Single-force representation of earthquakes due to landslides or the collapse of caverns. Geophys J Int 122(1):243–248. https://doi.org/10.1111/j.1365‐246X.1995.tb03551.x

    Article  Google Scholar 

  • Gilbert A, Leinss S, Kargel J et al (2018) Mechanisms leading to the 2016 giant twin glacier collapses, Aru Range, Tibet. Cryosphere 12(9):2883–2900

    Article  Google Scholar 

  • Huggel C, Caplan‐Auerbach J, Waythomas CF, Wessels RL (2007) Monitoring and modeling ice-rock avalanches from ice‐capped volcanoes: a case study of frequent large avalanches on Iliamna Volcano, Alaska. J Volcanol Geotherm Res 168(1–4):114–136

    Article  Google Scholar 

  • Iverson RM (2012) Elementary theory of bed-sediment entrainment by debris flows and avalanches. J Geophys Res 117(F03006). https://doi.org/10.1029/2011JF002189

  • Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. J Geophys Res Solid Earth 106(B1):537–552

    Article  Google Scholar 

  • Iverson RM, Ouyang C (2015) Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory. Rev Geophys 53:27–58. https://doi.org/10.1002/2013RG000447

    Article  Google Scholar 

  • Kääb A et al (2005) Remote sensing of glacier-and permafrost-related hazards in high mountains: an overview. Nat Hazards Earth Syst Sci 5:527–554. https://doi.org/10.5194/nhess-5-527-2005

    Article  Google Scholar 

  • Kääb A, Leinss S, Gilbert A et al (2018) Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nat Geosci 11(2):114

    Article  Google Scholar 

  • Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the Earth from traveltimes. Geophys J R Astron Soc 122(1):108–124

    Article  Google Scholar 

  • Li Z, Huang X, Xu Q, Yu D, Fan J, Qiao X (2017) Dynamics of the Wulong landslide revealed by broadband seismic records. Earth Planet Space 69(1):27

    Article  Google Scholar 

  • Li W, Chen Y, Liu F, Yang H, Liu J, Fu B (2019) Chain-style landslide hazardous process: constraints from seismic signals analysis of the 2017 Xinmo landslide, SW China. J Geophys Res: Solid Earth 124. https://doi.org/10.1029/2018JB016433

  • Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20:1729–1742. https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y

    Article  Google Scholar 

  • Liu W, He S, Li X (2015) Numerical simulation of landslide over erodible surface. Geoenviron Disasters 2(1):19

    Article  Google Scholar 

  • Mahboob MA, Iqbal J, Atif I (2015) Modeling and simulation of glacier avalanche: a case study of Gayari sector glaciers hazards assessment. IEEE Trans Geosci Remote Sens 53(11):5824–5834

    Article  Google Scholar 

  • Mangeney A, Tsimring LS, Volfson D, Aranson IS, Bouchut F (2007) Avalanche mobility induced by the presence of an erodible bed and associated entrainment. Geophys Res Lett 34(22)

  • Mangeney-Castelnau A, Vilotte JP, Bristeau MO, Perthame B, Bouchut F, Simeoni C, Yerneni S (2003) Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme. J Geophys Res Solid Earth 108(B11)

  • McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42(5):1437–1448

    Article  Google Scholar 

  • McSaveney MJ (2002) Recent rockfalls and rock avalanches in Mount Cook national park, New Zealand. Rev Eng Geol 15:35–70

    Article  Google Scholar 

  • McSaveney MJ, Davies TR (2007) Rockslides and their motion. In: Sassa K, Fukuoka H, Wang F, Wang G (eds) Progress in landslide science. Springer-Verlag, Berlin, pp 113–134. https://doi.org/10.1007/978-3-540-70965-7_8

    Chapter  Google Scholar 

  • Moretti L, Mangeney A, Capdeville Y, Stutzmann E, Huggel C, Schneider D, Bouchut F (2012) Numerical modeling of the Mount Steller landslide flow history and of the generated long period seismic waves. Geophys Res Lett 39(16)

  • Moretti L, Allstadt K, Mangeney A, Capdeville Y, Stutzmann E, Bouchut F (2015) Numerical modeling of the Mount Meager landslide constrained by its force history derived from seismic data. J Geophys Res Solid Earth 120:2579–2599. https://doi.org/10.1002/2014JB011426

    Article  Google Scholar 

  • Ouyang C, He S, Tang C (2015) Numerical analysis of dynamics of debris flow over erodible beds in Wenchuan earthquake-induced area. Eng Geol 194:62–72

    Article  Google Scholar 

  • Pirulli M, Pastor M (2012) Numerical study on the entrainment of bed material into rapid landslides. Geotechnique 62(11):959–972

    Article  Google Scholar 

  • Pudasaini SP, Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer, Berlin

    Google Scholar 

  • Pudasaini SP, Wang Y, Hutter K (2005) Modelling debris flows down general channels. Nat Hazards Earth Syst Sci 5(6):799–819

    Article  Google Scholar 

  • Quincey DJ, Braun M, Glasser NF, Bishop MP, Hewitt K, Luckman A (2011) Karakoram glacier surge dynamics. Geophys Res Lett 38(18)

  • Sabot F, Naaim M, Granada F, Surinach E, Planet P, Furdada G (1998) Study of avalanche dynamics by seismic methods, image-processing techniques and numerical models. Ann Glaciol 26:319–323

    Article  Google Scholar 

  • Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215

    Article  Google Scholar 

  • Schneider JF (2004) Risk assessment of remote geohazards in western Pamir, GBAO, Tajikistan. In: Proceedings of the international conference on high mountain hazard prevention, Vladikavkaz Moscow, 23–26.06. 2004, pp 252–255.

  • Schneider D, Bartelt P, Caplan-Auerbach J, Christen M, Huggel C, McArdell BW (2010) Insights into rock-ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model. J Geophys Res Earth 115. https://doi.org/10.1029/2010jf001734.

  • Schneider D, Huggel C, Haeberli W, Kaitna R (2011) Unraveling driving factors for large rock–ice avalanche mobility. Earth Surf Process Landf 36(14):1948–1966

    Article  Google Scholar 

  • Shugar DH, Clague JJ (2011) The sedimentology and geomorphology of rock avalanche deposits on glaciers. Sedimentology 58(7):1762–1783. https://doi.org/10.1111/j.1365-3091.2011.01238.x

    Article  Google Scholar 

  • Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng Geol Amst 100:11–26. https://doi.org/10.1016/j.enggeo.2008.02.012

    Article  Google Scholar 

  • Tian L, Yao T, Gao Y et al (2017) Two glaciers collapse in western Tibet. J Glaciol 63(237):194–197

    Article  Google Scholar 

  • Toro EF (2001) Shock capturing methods for free surface shallow flows. John Wiley & Sons, Chichester

    Google Scholar 

  • Wang R (1999) A simple orthonormalization method for stable and efficient computation of Green’s functions. Bull Seismol Soc Am 89(3):733–741 Accession: 029788774

    Google Scholar 

  • Wang B, Bao Q, Hoskins B, Wu G, Liu Y (2008) Tibetan Plateau warming and precipitation changes in East Asia. Geophys Res Lett 35:L14702. https://doi.org/10.1029/2008GL034330

    Article  Google Scholar 

  • Yamada M, Mangeney A, Matsushi Y, Moretti L (2016) Estimation of dynamic friction of the Akatani landslide from seismic waveform inversion and numerical simulation. Geophys J Int 206(3):1479–1486

    Article  Google Scholar 

  • Zhang Z, Liu S, Zhang Y et al (2018) Glacier variations at Aru Co in western Tibet from 1971 to 2016 derived from remote-sensing data. J Glaciol 64(245):397–406

    Article  Google Scholar 

  • Zhang Z, He S, Liu W, et al (2019) Source characteristics and dynamics of the October 2018 Baige landslide revealed by broadband seismograms. Landslides 1–9

Download references

Acknowledgments

We thank for the suggestions of anonymous reviewers and Professor Mauri Mcsaveney for assisting in the improvement of the manuscript, which greatly improved the quality of this paper. We also are thankful for the seismic data of this study provided by Data Management Centre of China National Seismic Network at Institute of Geophysics, China Earthquake Administration and the Digital Elevation Model (DEM) data of pre-collapse which were obtained from the Geospatial Data Cloud (http://www.gscloud.cn/).

Funding

This work was supported by the National Key Research and Development Program of China (Project No. 2017YFC1501003), the Major Program of the National Natural Science Foundation of China (Grant No. 41790433), the National Natural Science Foundation of China (Grant No. 41772312), Key Deployment Project of CAS:KFZD-SW-424.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siming He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., He, S. Dynamic process of the massive Aru glacier collapse in Tibet. Landslides 17, 1353–1361 (2020). https://doi.org/10.1007/s10346-019-01337-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-019-01337-x

Keywords

Navigation