Skip to main content
Log in

Process dependence of grain size distributions in rock avalanche deposits

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Rock avalanches are a form of hazardous long-runout landslide and leave fragmented deposits of complex sedimentology that, if studied in detail, can provide insight into their emplacement processes. Complexity arises due to the myriad overlapping factors known to contribute to the final deposit fabric, such as source structures, lithology (i.e. material properties), topographic feedback, substrate interaction and emplacement processes (i.e. internal factors), as well as our reliance on (un)suitable exposures. Herein, we present sedimentological data from two carbonate rock avalanche deposits (Tschirgant in Austria and Flims in Switzerland), where changes in lithology can be eliminated from the causal equation due to their largely mono-mineralic composition. We further eliminated the effects of external influences such as topography or substrate interactions by detailed facies mapping of the deposit interior. Since sedimentary properties locally vary within less than 1-m2 outcrop area, emplacement processes are the only causes that remain to explain the different fabrics. Characteristic (fractal) grain size distributions of three distinctive sub-facies in the interior of these, and other, rock avalanche deposits—jigsaw-fractured, fragmented, and shear zone facies—can be linked to specific processes acting during emplacement. We suggest that a heterogeneously distributed and progressively increasing particle breakage in the moving granular mass best explains the ranges of fractal dimensions and associated features for the respective sub-facies, from simple breakage along pre-existing planes, through dynamic fragmentation which locally minimises coordination number, to zones of shear concentration. No exotic emplacement mechanisms (such as air-layer lubrication or fluidised substrates) are required to produce these features; continued, heterogeneous degrees of fragmentation of an initially intact source rock best explains the sedimentary record of rock avalanches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abele G (1974) Bergstürze in den Alpen, ihre Verbreitung, Morphologie und Folgeerscheinungen. Wissenschaftliche Alpensvereinshefte 25:230

    Google Scholar 

  • Anders MH, Aharonov E, Walsh JJ (2000) Stratified granular media beneath large slide blocks: implications for mode of emplacement. Geology 28(11):971–974

    Article  Google Scholar 

  • Beuselinck L, Govers G, Poesen J, Degraer G, Froyen L (1998) Grain-size distribution by laser diffractometry: comparison with the sieve-pipette method. Catena 32:193–208

    Article  Google Scholar 

  • Brideau M-A, Procter JN (2015) Discontinuity orientation in jigsaw clasts from volcanic debris avalanche deposits and implications for emplacement mechanism. GeoQuébec 2015:20–23 Abstract 614

    Google Scholar 

  • Caballero L, Sarocchi D, Soto E, Borselli L (2014) Rheological changes induced by clast fragmentation in debris flows. J Geophys Res: Earth Surf 119(9):1800–1817

    Article  Google Scholar 

  • Campbell CS (1989) Self-lubrication for long runout landslides. J Geol 97(6):653–665

    Article  Google Scholar 

  • Cintala MJ, Hörz F (1992) An experimental evaluation of mineral-specific comminution. Meteoritics 27:395–403

    Article  Google Scholar 

  • Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661–703

    Article  Google Scholar 

  • Crosta GB, Frattini P, Fuis N (2007) Fragmentation in the Val Pola rock avalanche, Italian Alps. J Geophys Res 112:23

    Article  Google Scholar 

  • Davies TR (1982) Spreading of rock avalanche debris by mechanical fluidization. Rock Mech 15(1):9–24

  • Davies TR, McSaveney MJ (2009) The role of rock fragmentation in the motion of large landslides. Eng Geol 109:67–79

    Article  Google Scholar 

  • Davies TR, McSaveney MJ, Hodgson KA (1999) A fragmentation-spreading model for long-runout rock avalanches. Can Geotech J 36:1096–1110

    Article  Google Scholar 

  • Dufresne A, Prager C, Bösmeier AS (2016a) Insights into rock avalanche emplacement processes by detailed morpho-lithological studies of the Tschirgant deposit (Tyrol Autria). Earth Surf Process Landf 41(5):587–602

    Article  Google Scholar 

  • Dufresne A, Bösmeier AS, Prager C (2016b) Rock avalanche sedimentology – case study and review. Earth-Sci Rev 163:234–259

    Article  Google Scholar 

  • Dunning S (2004) Rock avalanches in high mountains [PhD thesis]. University of Luton, UK:309

  • Dunning SA, Armitage PJ (2011) The grain-size distribution of rock-avalanche deposits: implications for natural dam stability. In: Evans SG, Hermanns RL, Strom A, Scarascia-Mugnozza G (eds), Natural and Artifical Rockslide Dams, Lecture Notes in Earth Sciences 133:479–498

  • Einav I (2007) Breakage mechanics – part II: modelling granular materials. J Mech Phys Solids 55:1298–1320

    Article  Google Scholar 

  • Erismann TH (1979) Mechanisms of large landslides. Rock Mech 12(1):15–46

    Article  Google Scholar 

  • Evans DJA, Benn DI (2004) Facies description and the logging of sedimentary exposures. In: Evans DJA, Benn DI (eds) A practical guide to the study of glacial sediments. Routledge, Taylor & Francis Group, New York, pp 11–51

    Google Scholar 

  • Friedmann SJ (1997) Rock-avalanche elements of the Shadow Valley basin, eastern Mojave Desert, California: processes and problems. J Sediment Res 67(5):792–804

    Google Scholar 

  • Gillespie CS (2015) Fitting heavy tailed distributions: the poweRlaw package. J Stat Softw 64(2). doi:10.18637/jss.v064.i02

  • Glicken H (1996) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens, Washington. USGS Open-file Report 96–677:90 pp

  • Heim A (1932) Bergsturz und Menschenleben (Landslides and human lives). Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 77. Beer & Co, Zürich 218 pp

    Google Scholar 

  • Hewitt K (2001) Catastrophic rockslides and the geomorphology of the Hunza and Gilgit river valleys, Karakoram Himalaya. Erdkunde 55:72–93

    Article  Google Scholar 

  • Hewitt K (2002) Styles of rock avalanche depositional complexes conditioned by very rugged terrain, Karakoram Himalaya, Pakistan. Rev Eng Geol 15:345–377

    Article  Google Scholar 

  • Hooke RLEB, Iverson NR (1995) Grain-size distribution in deforming subglacial tills: role of grain fracture. Geology 23(1):57–60

    Article  Google Scholar 

  • Huang R, Pei X, Fan X, Zhang W, Li S, Li B (2012) The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, may 12, 2008, China. Landslides 9:131–142

    Article  Google Scholar 

  • Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long runout-out mechanism. Geol Soc Am Bull 116(9–10):1240–1252

    Article  Google Scholar 

  • Hutchinson JN (2006) Massive rocks slope failure: perspectives and retrospectives on state-of-the-art. IN: Evans SG, Scarascia-Mugnozza G, Strom AL, Hermanns RL (eds) Landslides from Massive Rock Slope Failure. Nato Science Series IV, Earth and Environmental Sciences 49:619–662

  • Hutchinson JN, Bhandari RK (1971) Undrained loading, a fundamental mechanism of mudflows and other mass movements. Géotechnique 21:353–358

    Article  Google Scholar 

  • Iverson NR, Hoover TS, Hooke RL (1996) A laboratory study of sediment deformation: stress heterogeneity and grain-size evolution. Ann Glaciol 22:167–175

    Article  Google Scholar 

  • Johnson BC, Campbell CS, Melosh HJ (2016) The reduction of friction in long runout landslides as an emergent phenomenon. J Geophys Res, Earth Surf. doi:10.1002/2015JF003751

    Google Scholar 

  • Kelfoun K, Druitt TH (2005) Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J Geophys Res B: Solid Earth 110(12):1–13

    Google Scholar 

  • Lade PV, Yamamuro JA, Bopp PA (1996) Significance of particle crushing in granular materials. J Geotech Eng 122(4):309–316

    Article  Google Scholar 

  • Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:310–331

    Article  Google Scholar 

  • McSaveney MJ, Davies TR (2007) Rockslides and their motion. In: Sassa K, Fukuoka H, Wang F, Wang G (eds) Progress in landslide science. Springer-Verlag, Berlin, pp 113–134

    Chapter  Google Scholar 

  • Melosh HJ (1979) Acoustic fluidization – a new geologic process. J Geophys Res 84(B13):7513–7520

    Article  Google Scholar 

  • Nakata Y, Hyodo M, Hyde AFL, Kato Y, Murata H (2001) Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soils Found 41(1):69–82

    Article  Google Scholar 

  • Ostermann M, Ivy-Ochs S, Sanders D, Prager C (2016) Multi-method (14C, 36Cl, 234U/230Th) age bracketing of the Tschirgant rock avalanche (eastern alps): implications for absolute dating of catastrophic mass-wasting. Earth Surf Process Landf. doi:10.1002/esp.4077

    Google Scholar 

  • Pagliarini L (2008) Strukturelle Neubearbeitung des Tschirgant und Analyse der lithologisch-strukturell induzierten Massenbewegung (Tschirgant Bergsturz, Nördliche Kalkalpen, Tirol). Diplom thesis. Leopold-Franzens-Universität Innsbruck, Austria:95 pp

  • Patzelt G (2012) The rock avalanches of Tschirgant and Haiming (upper Inn Valley, Tyrol, Austria), comment on the map supply. Jahrb Geol Bundesanst 152(1–4):13–24

    Google Scholar 

  • Perinotto H, Schneider J-L, Bachèlery P, Le Bourdonnec F-X, Famin V, Michon L (2015) The extreme mobility of debris avalanches: a new model of transport mechanism. J Geophys Res: Solid Earth. doi:10.1002/2015JBO11994

    Google Scholar 

  • Pollet N, Schneider J-LM (2004) Dynamic disintegration processes accompanying transport of the Holocene Flims Sturzstrom (Swiss Alps). Earth Planet Sci Lett 221:433–448

    Article  Google Scholar 

  • Prager C (2010) Geologie, Alter und Struktur des Fernpass Bergsturzes und tiefgründiger Massenbewegungen in seiner Umgebung. PhD thesis, Universität Innsbruck, Tirol, Österreich, p 307

  • Reading HG (ed) (2009) Sedimentary environments: processes, facies, and stratigraphy. Oxford, Blackwell, 689 pp

    Google Scholar 

  • Roverato M, Cronin S, Procter J, Capra L (2015) Textural features as indicators of debris avalanche transport and emplacement, Taranaki volcano. GSA Bull 127(1–2):3–18

    Article  Google Scholar 

  • Sammis C, King G (2007) Mechanical origin of power law scaling in fault zone rock. Geophys Res Lett 34:L04312. doi:10.1029/2006GL028548

    Article  Google Scholar 

  • Sammis CG, King G, Biegel RL (1987) The kinematics of gouge deformation. Pure Appl Geophys 125:777–812

    Article  Google Scholar 

  • Storti F, Balsamo F, Salvini F (2007) Particle shape evolution in natural carbonate granular wear material. Terra Nov. 19:344–352

  • Tsoungui O, Vallet D, Charmet J-C (1999) Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technol 105:190–198

    Article  Google Scholar 

  • van Wyk de Vries B, Self S, Francis PW, Keszthelyi L (2001) A gravitational spreading origin for the Socompa debris avalanche. J Volcanol Geotherm Res 105:225–247

    Article  Google Scholar 

  • Voight B, Janda RJ, Glicken H, Douglass PM (1983) Nature and mechanics of the Mount St. Helens rockslide-debris avalanche of 18 may 1980. Géotechnique 33(3):243–273

    Article  Google Scholar 

  • von Poschinger A, Wassmer P, Maisch M (2006) The Flims rockslides: history of interpretation and new insights. In: Evans SG, Scarascia MG, Strom A, Hermanns RL (eds), Landslides from massive rock slope failure, NATO Science Series, IV, Earth and Environmental Sciences 49:329–256

  • Walker RG (1992) Facies, facies models and modern stratigraphic concepts. In: Walker RG, James NP (eds) Facies models: response to sea-level change. Geological Association of Canada, Toronto, pp 1–14

    Google Scholar 

  • Wassmer P, Schneider JL, Pollet N, Schmitter-Voirin C (2004) Effects of the internal structure of a rock-avalanche dam on the drainage mechanism of its impoundment, Flims Sturzstrom and Ilanz paleo-lake, Swiss Alps. Geomorphology 61:3–17

    Article  Google Scholar 

  • Weidinger JT, Korup O, Munack H, Altenberger U, Dunning S, Tipelt G, Lottermoser W (2014) Giant rockslides from the inside. Earth Planet Sci Lett 389:62–73

    Article  Google Scholar 

  • Yarnold JC, Lombard JP (1989) A facies model for large rock avalanche deposits formed in dry climates. In: Colburn IP, Abbott PL, Minch J (eds) Field Trip Guidebook - Pacific Section, Society of Economic Paleontologists and Mineralogists 62:9–31

  • Zhang M, Yin Y, McSaveney M (2016) Dynamics of the 2008 earthquake-triggered Wenjiagou Creek rock avalanche, Qingping, Sichuan, China. Eng Geol 200:75–87

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially funded by the German Research Foundation grant DU1294/2-1 to AD. We gratefully acknowledge thorough review by the editor Mauri McSaveney and by two anonymous reviewers. AD is indebted to Christoph Prager for abseiling during sample collection at Tschirgant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dufresne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dufresne, A., Dunning, S.A. Process dependence of grain size distributions in rock avalanche deposits. Landslides 14, 1555–1563 (2017). https://doi.org/10.1007/s10346-017-0806-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-017-0806-y

Keywords

Navigation