Skip to main content
Log in

Phytosynthesis of Silver Nanoparticles using Leaf Extracts from Ocimum basilicum and Mangifira indica and their Effect on some Biochemical Attributes of Triticum aestivum

Photosynthese von Silber-Nanopartikeln mit Blattextrakt von Ocimum basilicum und Mangifira indica und deren Auswirkung auf bestimmte biochemische Eigenschaften von Triticum aestivum

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

In this investigation, leaf extracts of Ocimum basilicum and Mangifira indica were used as reducing agents for biosynthesis of silver nanoparticles (AgNPs). The biosynthesized AgNPs were authorized by UV-vis spectrophotometry and X‑ray diffraction (XRD) analysis. AgNPs were obtained after 5 min of reaction at 80oC. The formation of AgNPs was confirmed by the presence of absorption peaks at 439 nm using extract from O. basilicum and at 442.5 nm from M. indica. X‑ray spectra showed strong peaks for the crystalline Ag. Shape and size of the biosynthesized AgNPs were studied using high resolution transmission electron microscope (HR-TEM). Size of the produced AgNPs was found to be 9–35 nm. Effect of the synthesized nanosilver was then investigated on some biochemical attributes of wheat plant (Triticum aestivum cultivar saka 92). The growth parameters such as shoot lengths, fresh and dry weight of shoot, chlorophyll, carbohydrate and protein contents in shoot of wheat plant were investigated. Application of AgNPs synthesized from Ocimum basilicum and from Mangifira indica at the concentrations of 20,40 ppm showed an increase in shoot length, fresh and dry weight of shoot, chlorophyll, total carbohydrate and protein content in shoot of wheat plants, beyond these concentrations an inhibitory effects were shown.

Zusammenfassung

In dieser Untersuchung wurden Blattextrakte von Ocimum basilicum und Mangifira indica als Reduktionsmittel für die Biosynthese von Silber-Nanopartikeln (AgNPs) verwendet. Die biosynthetisierten AgNPs wurden durch UV/Vis-Spektroskopie und Röntgendiffraktionsanalyse verifiziert. Die AgNPs wurden nach 5 Reaktionsminuten bei 80 °C gewonnen. Die Bildung von AgNPs wurde durch das Vorhandensein von Absorptionsspitzen bei 439 nm bei O.-basilicum-Extrakt und bei 442,5 nm bei M.-indica-Extrakt bestätigt. Röntgenspektren zeigten starke Spitzen für das kristalline Ag. Die Form und Größe der biosynthetisierten AgNPs wurden mit hochauflösender Transmissionselektronenmikroskopie (HR-TEM) untersucht. Die Größe der produzierten AgNPs lag bei 9–35 nm. Dann wurde die Auswirkung des synthetisierten Nanosilbers auf bestimmte biochemische Eigenschaften von Weizenpflanzen (Triticum aestivum, Sorte „Saka 92“) analysiert. Wachstumsparameter wie Trieblänge, Frisch- und Trockengewicht der Triebe, Chlorophyll-, Kohlenhydrat- und Proteingehalt von Weizentrieben wurden untersucht. Die Anwendung von AgNPs, synthetisiert mit Ocimum basilicum und Mangifira indica, in Konzentrationen von 20,40 ppm ergab längere Triebe, höheres Frisch- und Trockengewicht der Triebe, einen höheren Chlorophyll-, Gesamtkohlenhydrat- und Proteingehalt der Weizentriebe. Über diese Konzentrationen hinaus wurde eine inhibitorische Wirkung gezeigt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abboud Y, Eddahbi A, El Bouari A, Aitenneite H, Brouzi K, Mouslim J (2013) Microwave-assisted approach for rapid and green phytosynthesis of silver nanoparticles using aqueous onion (Allium cepa) extract and their antibacterial activity. J Nanostruct Chem 3:84

    Article  Google Scholar 

  • Abdel-Aziz M, Shaheen MS, El-Nekeety AA, Wahhab AMA (2014) Antioxidant and antibacterial activity of silver nanopartilcels biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soc 18:356–363

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method or the quantitation of microgram quantities of protein using the principles of dye-binding. Anal Biochem 72:143

    Article  Google Scholar 

  • Chen X, Schluesener HJ (2008) Nanosilver: A nanoproduct in medical application. Toxicol Lett 176:1–12

    Article  CAS  PubMed  Google Scholar 

  • Elgorbana AM, El-Samawatya AM, Yassina MA, Sayed SR, Adile SF, Elhindif KM, Bakrig M, Khan M (2016) Antifungal silver nanoparticles: Synthesis, characterization and biological evaluation. Biotechnol Biotechnol Equip 30(1):56–62

    Article  Google Scholar 

  • Elliott C (2010) The effects of silver dressings on chronic and burns wound healing. Br J Nurs 19:32–36

    Article  Google Scholar 

  • Farghaly FA, Nafady NA (2015) Green synthesis of silver nanoparticles using leaf extract of Rosmarinus officinalis and its effect on Tomato and Wheat plants. J Agric Sci 7(11). doi:10.5539/jas.v8n4p179

  • Forough M, Farhadi K (2010) Biological and green synthesis of silver nanoparticles. Turkish J Eng Env Sci 34:281–287

    CAS  Google Scholar 

  • Ganesh Babu MM, Gunasekaran P (2013) Extracellular synthesis of crystalline silver nanoparticles and its characterization. Mater Lett 90:162–164

    Article  CAS  Google Scholar 

  • Gole A, Dash C, Ramakrishnaan V, Sainkar SR, Mandal AB, Rao M, Sastry M (2001) Pepsin-gold colloid conjugates: Preparation, characterization, and enzymatic activity. Langmuir 17:1674–1679

    Article  CAS  Google Scholar 

  • Gorinstein S, Park YS, Heo BG, Namiesnik J, Leontowicz H, Leontowicz M, Ham KS, Cho JY, Kang SG (2009) A comparative study of phenolic compounds and antioxidant and antiproliferative activities in frequently consumed raw vegetables. Eur Food Res Technol 228:903–911

    Article  CAS  Google Scholar 

  • Groneberg DA, Giersig M, Welte T, Pison U (2006) Nanoparticle-based diagnosis and therapy. Curr Drug Targets 7:643–648

    Article  CAS  PubMed  Google Scholar 

  • Hedge JE, Hofreiter BT (1962) In: Whistler RL, BeMiller JN (eds) Methods in carbohydrate chemistry, vol 17. Academic Press, New York, p 420

    Google Scholar 

  • Hojjat SS (2015) Impact of silver nanoparticles on germinated fenugreek seed. Int J Agri Crop Sci 8(4):627–630

    CAS  Google Scholar 

  • Javanmardi J, Khalighi A, Kashi A, Bais HP, Vivanco JM (2002) Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. J Agric Food Chem 50:5878–5883

  • Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant growth metabolism. Process Biochem 47:651–658

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biot 84:151–157

    Article  CAS  Google Scholar 

  • Liu XM, Zhang FD, Zhang SQ, He XS, Fang R, Feng Z, Wang Y (2005) Effects of nano – ferric oxide on the growth and nutrients absorption of peanut. Plant Nutr Fert Sci 11:14–18

    Google Scholar 

  • Liyana-Pathirana CM, Shahidi F (2005) Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L.) as affected by gastric pH conditions. J Agric Food Chem 53:2433–2440

  • Logeswari P, Silambarasan S, Abraham J (2015) Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc 19:311–317

    Article  Google Scholar 

  • Lu X, Wang J, Al-Qadiri HM, Ross CF, Powers JR, Tang J, Rasco BA (2011) Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chem 129:637–644

  • Mansoori AG (2005) “Advances in atomic and molecular nanotechnology,” Principles of nanotechnology, molecular-based study of condensed matter in small systems, pp 1–30 (chapter 1)

    Book  Google Scholar 

  • Metzner H, Rau H, Senger H (1965) Untersuchungen Zur Synchronisierbarkeit einzelner Pigment-Mangel Mutanten von Chlorella. Planta 65:186

    Article  CAS  Google Scholar 

  • Mori Y, Ono T, Miyahira Y, Quang V, Nguyen VQ, Matsui T, Ishihara M (2013) Antiviral activity of silvernanoparticle/chitosan composites against H1N1 influenza. A virus. Nanoscale Res Lett 8:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Muknthan K, Balaji S (2012) Cashew apple juice (Anacardium occidentale L.) speeds u up the synthesis of silver nanoparticles. Internat J Green Nanotechnol 4:71–79

  • Najafi S, Heidari R, Jamei R (2014) Photosynthetic characteristics, membrane lipid levels and protein content in the Phaseolus vulgaris L. (cv. Sadri) exposed to magnetic field and silver nanoparticles. Bull Environ Pharmacol Life Sci 3:72–76

  • Racuciu M, Creanga DE (2007) TMA-OH Coated magnetic nanoparticles internalized in vegetal tissue. Roman J Phys 52:395–402

    CAS  Google Scholar 

  • Salama HMH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3:190–197

  • Saxena A, Tripathi RM, Singh RP (2010) Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig J Nanomat Biostruct 5(2):427–432

  • Saxena A, Tripathi RM, Zafar F, Singh P (2012) Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater Lett 67:91–94

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic au-ag alloy nanoparticles. Small 1(5):517–520

    Article  CAS  PubMed  Google Scholar 

  • Shah KA, Patel MB, Patel RJ, Parmar PK (2010) Mangifera Indica (Mango). Pharmacogn Rev 4(7):42–48

  • Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res 13:2981–2988

  • Statistical Analysis System (2006) SAS user’s guide: Statistics. SAS Institute Inc.Editors, Cary, NC

    Google Scholar 

  • Sharma P, Bhatt D, Zaidi MG, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticlemediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233

Download references

Acknowledgements

The authors are thankful to Dr. Mona Mostafa Saif Assistant professor of inorganic chemistry, Faculty of Education, Ain Shams University, for helping us with UV-Vis spectroscopy and FTIR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanan H. Latif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latif, H.H., Ghareib, M. & Tahon, M.A. Phytosynthesis of Silver Nanoparticles using Leaf Extracts from Ocimum basilicum and Mangifira indica and their Effect on some Biochemical Attributes of Triticum aestivum . Gesunde Pflanzen 69, 39–46 (2017). https://doi.org/10.1007/s10343-017-0385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-017-0385-9

Keywords

Schlüsselwörter

Navigation