Skip to main content
Log in

The Nature of Sorghum Halepense (L.) Pers. Spatial Distribution Patterns in Tomato Cropping Fields

Die Beschaffenheit von Sorghum halepense (L.) Pers.-Verteilungsmustern im Tomatenanbau

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Spatial distribution of Sorghum halepense (L.) Pers. populations was assessed in tomato cropping fields in a total of 11 commercial fields (93 ha). Weed infestation was visually assessed from the cabin of a tractor after harvesting, using a three category ranking, ‘high’, ‘low’, and ‘no presence’, through infestation maps. Crop management factors as well as intrinsic parameters of patches were collected and calculated. The proportion of the field infested with low and high S. halepense densities, patch anisotropy, the effect of field borders and field topography were studied. On average, 5 and 3 % of the surveyed area was infested with high and low densities, respectively. The majority of patches were of small size and most of the infested area was concentrated in a few large patches with irregular shape. Small patches, those with less than 50 m2, represented 70 % of the total number of detected patches. However, they only accounted for the 3 % of infested area. Tillage operations showed a great influence on patch shape, producing patches twice longer in the direction of tillage than perpendicular to tillage. This result revealed the influence of human operations in S. halepense spreading. The effect of edges also had a great influence in patch expansion. Patches in contact with a field border were almost five times longer than their width in the direction of tillage. Also, the effect of borders stimulated the infestation. Areas closer to the borders had a higher risk of S. halepense infestation than zones in the center of the fields. In addition, patches tended to increase complexity the bigger they became, with a progressive shrinkage in the ratio area/perimeter2. The influence of location within the field revealed that higher levels of infestation were found on the lowest and closest areas to riverbeds, in areas with flooding risk. Characterizing the location of S. halepense patches after harvesting offers a precise and cheap method for the construction of weed maps, which can be used for site-specific treatments and description of weed spatial biology.

Zusammenfassung

Die räumliche Verteilung von Sorghum halepense (L.) Pers.-Gesellschaften wurde in elf, zum kommerziellen Tomatenanbau genutzten Feldern (93 ha) untersucht. Der Unkrautbefall wurde nach der Ernte visuell von der Traktorkabine beurteilt und in drei Kategorien, „hoch“, „niedrig“, „kein Vorkommen“, für Befallskarten eingestuft. Sowohl die Faktoren der Feldbewirtschaftung, als auch die Eigenparameter von Unkrautnestern wurden gesammelt und berechnet. Das Verhältnis von Feldern mit einer geringen und hohen Befallsdichte von S. halepense, die Anisotropie der Nester, der Einfluss von Feldgrenzen und die Feld-Topographie wurden untersucht. Im Durchschnitt waren 5 und 3 % der beobachteten Flächen stark bzw. leicht befallen. Hauptsächlich traten kleine Nester auf und befallene Gebiete bestanden aus wenigen großen Nestern mit unregelmäßigen Umrissen. Kleine Nester mit weniger als 50 m2, repräsentieren 70 % der insgesamt beobachteten Nester. Jedoch beanspruchen sie nur 3 % der befallenen Flächen. Bodenbearbeitung mittels Pflug zeigt einen großen Einfluss auf die Nestform: Unkrautnester sind in Bearbeitungsrichtung doppelt so lang wie orthogonal zu dieser. Das Ergebnis zeigt den Einfluss der Bearbeitung auf die Ausbreitung von S. halepense. Auch Ränder haben einen großen Einfluss auf die Nestausbreitung. Nester am Rand eines Feldes waren in Pflugrichtung nahezu fünfmal so lang, wie breit in Pflugrichtung. Darüber hinaus lässt sich ein grundsätzlich verstärkender Effekt der Feldgrenzen auf den Befall nachweisen. Grenznahe Gebiete haben ein erhöhtes Risiko durch S. halepense befallen zu werden, als Regionen im Inneren eines Feldes. Zudem tendieren Nester zu erhöhter Komplexität je größer sie werden. Das Verhältnis Fläche/Umfangareal2 schrumpft progressiv. Der Einfluss von Positionen innerhalb des Feldes zeigt deutlich, dass höhere Befallsstufen bei den niedrigsten und nächsten Flächen zu Flussbetten, also Hochwasserrisikogebieten, gefunden wurden. Die Charakterisierung von Gebieten mit S. halepense Nestern nach der Ernte stellt eine genaue und günstige Methode zur Erstellung von Unkrautkarten dar, die zur ortsbezogenen Behandlung und räumlichen Beschreibung der Unkrautbiologie genutzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andújar D, Ruiz D, Ribeiro A, Fernández-Quintanilla C, Dorado J (2011) Spatial distribution patterns of johnsongrass (Sorghum halepense) in corn fields in spain. Weed Sci 59(1):82–89

    Article  Google Scholar 

  • Andújar D, Barroso J, Fernández-Quintanilla C, Dorado J (2012) Spatial and temporal dynamics of Sorghum halepense patches in maize crops. Weed Res 52(5):411–420

    Article  Google Scholar 

  • Barroso J, Fernandez-Quintanilla C, Ruiz D, Hernaiz P, Rew L (2004) Spatial stability of Avena sterilis ssp. ludoviciana populations under annual applications of low rates of imazamethabenz. Weed Res 44(3):178–186

    Article  Google Scholar 

  • Bivand R, Altman M, Anselin L, Albo RAA, Berke O, Bernat A, Blanchet G, Blankmeyer E, Carvalho M, Christensen B, Chun Y, Dormann C, Dray SA, Halbersma R, Krainski E, Legendre P, Lewin-Koh N, Li H, Ma J, Millo G, Mueller W, Ono H, Peres-Neto P, Piras G, Reder M, Tiefelsdorf M, Yu. D (2013) spdep: Spatial dependence: weighting schemes, statistics and models,r package version 0.5-56

  • Brain P, Cousens R (1990) The effect of weed distribution on predictions of yield loss. J Appl Ecol 27:735–742

    Article  Google Scholar 

  • Cardina J, Sparrow D, McCoy E (1995) Analysis of spatial distribution of common lambsquarters (Chenopodium album) in no-till soybean (Glycine max). Weed Sci 43:258–268

    CAS  Google Scholar 

  • Colbach N, Forcella F, Johnson G (2000) Spatial and temporal stability of weed populations over five years. Weed Sci 48:366–377

    Article  CAS  Google Scholar 

  • Dieleman J, Mortensen D (1999) Characterizing the spatial pattern of Abutilon theophrasti seedling patches. Weed Res 39:455–467

    Article  Google Scholar 

  • Donald WW (1994) The biology of canada thistle (Cirsium arvense). Reviews of. Weed Sci 6:77–101

    Google Scholar 

  • European Council (2009) Directive 2009/128/ec of the european parliament and the council establishing a framework for community action to achieve the sustainable use of pesticides. Off J Eur Union 309:71–86

    Google Scholar 

  • Gerhards R, Christensen S (2003) Real-time weed detection, decision making and patch spraying in maize, sugar beet, winter wheat and winter barley. Weed Res 43(6):385–392

    Article  Google Scholar 

  • Holm L (1969) Weeds problems in developing countries. Weed Sci 17(1):113–118

    Google Scholar 

  • Horowitz M (1973) Spatial growth of Sorghum halepense (L.) pers. Weed Research 13(2):200–208

  • Humston R, Mortensen DA, Bjørnstad ON (2005) Anthropogenic forcing on the spatial dynamics of an agricultural weed: the case of the common sunflower. J Appl Ecol 42(5):863–872

    Article  Google Scholar 

  • Johnson G, Mortensen D, Gotway C (1996) Spatial and temporal analysis of weed seedling populations using geostatistics. Weed Sci 44:704–710

    CAS  Google Scholar 

  • Kelner D (1995) The effect of zero tillage on weed population. http://www.mandakzerotill.org/books/proceedings/proceedings%201995/weed_pop.html. Accessed 5 Aug 2010

  • Krohmann P, Gerhards R, Kühbauch W (2006) Spatial and temporal definitions of weed patches using quantitative image analysis.J Agro Crop Sci 192:72–78

    Article  Google Scholar 

  • MAPA (2013) Encuesta sobre superficies y rendimientos cultivos. Secretaría General Técnica Subdirección General de Estadística. Madrid

  • Marshall EJP (1989) Distribution patterns of plants associated with arable field edges. J Appl Ecol 26(1):247–257

    Article  Google Scholar 

  • Plant R (2012) Spatial data analysis in ecology and agriculture using R. CRC Press/Taylor & Francis Group Boca Raton 33487-2742

  • Ruiz D, Escribano C, Fernández-Quintanilla C (2006) Assessing the opportunity for site-specific management of Avena sterilis in winter barley fields in spain. Weed Res 46(5):379–387

    Article  Google Scholar 

  • Webster TM, Cardina J, Woods SJ (2000) Spatial and temporal expansion patterns of Apocynum cannabinum patches. Weed Sci 48(6):728–733

    Article  CAS  Google Scholar 

  • Wiles L, Brodahl M (2004) Exploratory data analysis to identify factors influencing spatial distributions of weed seed banks. Weed Sci 52:936–947

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Foundation Alfonso Martín Escudero.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Rueda-Ayala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andújar, D., Rueda-Ayala, V., Jackenkroll, M. et al. The Nature of Sorghum Halepense (L.) Pers. Spatial Distribution Patterns in Tomato Cropping Fields. Gesunde Pflanzen 65, 85–91 (2013). https://doi.org/10.1007/s10343-013-0301-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-013-0301-x

Keywords

Schlüsselwörter

Navigation