Abstract
Brazil has extensive areas planted with Pinus taeda L. primarily in southern areas with poor soil fertility and nutritional management. Identifying optimal management practices can be difficult since forest floor litter, along with concomitant roots, may impact tree nutrition by interacting with fertilizer/lime applications. Seeking to evaluate this interaction, a nutrient omission experiment with seven treatments was designed to evaluate mid-rotation fertilizer/lime application to a P. taeda stand in southern Brazil. The seven treatments were: complete (N, P, K, B, Zn, Cu, Mo, and lime as a Ca and Mg source); NPK omission; micronutrient omission; K omission; Zn omission; lime omission; and control. Treatments were applied when the stand was five and seven years old, followed by harvest at twelve years. Pinus taeda responded positively, with commercial volume gains of 100% (60 to 122 m3 ha−1) when N and P were applied. Application of these nutrients also enhanced volume of logs in the 23–35-cm-diameter log class. No responses to K, lime (Ca and Mg), or micronutrient (Zn, Cu, B and Mo) amendments were observed. Nutrients and lime increased total litter accumulation, especially under omission of K. Roots were found in fragmented and humified forest floor layers, and omission of K enhanced total root mass (Mg ha−1), specific root length (m g−1), root length (km ha−1), and relative root mass (Mg Mg−1 of litter). Significant gains in P. taeda productivity on low fertility oxisols can be attained if the correct nutrients are applied at mid-rotation of these short-rotation forest systems.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Albaugh TJ, Allen HL, Fox TR (2007) Historical patterns of forest fertilization in the southeastern United States from 1969 to 2004. South J Appl for 31:129–137. https://doi.org/10.1093/sjaf/31.3.129
Albaugh TJ, Allen HL, Fox TR (2008) Nutrient use and uptake in Pinus taeda. Tree Physiol 28(7):1083–1098. https://doi.org/10.1093/treephys/28.7.1083
Albaugh T, Allen HL, Fox TR, Carlson CA, Rubilar RA (2009) Opportunities for fertilization of loblolly pine in the Sandhills of the southeastern United States. South J Appl for 33(3):129–136. https://doi.org/10.1093/sjaf/33.3.129
Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s Climate classification map for Brazil. Meteorol Z 22(6):711–728. https://doi.org/10.1127/0941-2948/2013/0507
Alves MJF, de Vander FM, Reissmann CB, Kaseker JF (2013) Reserva mineral de potássio em Latossolo cultivado com Pinus taeda L. Rev Bras Ciênc Solo 37(6):1599–1610. https://doi.org/10.1590/S0100-06832013000600016
Bakker M (1999) The effect of lime and gypsum applications on a sessile oak (Quercus petraea (M.) Liebl.) stand at La Croix-Scaille (French Ardennes) II. Fine root dynamics. Plant Soil 206:109–121. https://doi.org/10.1023/A:1004340930301
Bakker MR, Jolicoeur E, Trichet P, Augusto L, Plassard C, Guinberteau J, Loustau D (2009) Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand. Tree Physiol 29(2):229–238. https://doi.org/10.1093/treephys/tpn020
Barbosa CEM, Ferrari S, Carvalho MP, Picoli PRF, Cavallini MC, Benett CGS, Santos DMA (2012) Relationship between pine wood yield and physical and chemical traits of a Brazilian Cerrado oxisoil. Rev Árvore 36(1):25–35. https://doi.org/10.1590/S0100-67622012000100004
Batista AH, Motta ACV, Reissmann CB, Schneider T, Martins IL, Hashimoto M (2015) Liming and fertilisation in Pinus taeda plantations with severe nutrient deficiency in Savanna soils. Acta Sci Agron 37(1):117–125. https://doi.org/10.4025/actasciagron.v37i1.18061
Becker M, Meurer EJ (1986) Morfologia de raízes, suprimento e influxo de potássio em plantas de milho. Rev Bras Ciênc Solo 10:259–263.
Brunner I, Sperisen C (2013) Aluminum exclusion and aluminum tolerance in woody plants. Front Plant Sci 4:1–12. https://doi.org/10.3389/fpls.2013.00172
Carlson CA, Fox TR, Allen HL, Albaugh TJ, Rubilar RA, Stape JL (2013) Growth responses of loblolly pine in the Southeast United States to midrotation applications of nitrogen, phosphorus, potassium, and micronutrients. For Sci 60:157–169. https://doi.org/10.5849/forsci.12-158
Chaves RQ, Corrêa GF (2005) Macronutrients in the soil-Pinus caribaea Morelet system with yellowing of the needles followed by senescence and death. Rev Árvore 29(5):691–700. https://doi.org/10.1590/S0100-6762200500
Consalter R, Barbosa JZ, Prior SA, Vezzani FM, Bassaco MVM, Pedreira GQ, Motta ACV (2020) Mid-rotation fertilization and liming effects on nutrient dynamics of Pinus taeda L. in subtropical Brazil. Eur J for Res 140(19):35. https://doi.org/10.1007/s10342-020-01305-4
Crescente-Campo F, Sores P, Tomé M, Diéguez-Aranda U (2010) Modelling annual individual-tree growth and mortality of Scots pine with data obtained at irregular measurement intervals and containing missing observations. For Ecol Manag 260:1965–1974. https://doi.org/10.1016/j.foreco.2010.08.044
Dedecek RA, Fier ISN, Speltz R, Lima LCS (2008) Influência do sítio no desenvolvimento do Pinus taeda L. aos 22 anos: estado nutricional das plantas. Floresta 38:351–359. https://doi.org/10.5380/rf.v38i2.11630
Eimil-Fraga C, Sánchez-Rodríguez F, Álvarez-Rodríguez E, Rodríguez-Soalleiro R (2015) Variability in needle lifespan and foliar biomass along a gradient of soil fertility in maritime pine plantations on acid soils rich in organic matter. For Ecol Manag 343:34–41. https://doi.org/10.1016/j.foreco.2015.01.030
Faustino LI, Bulfe NML, Pinazo MA, Monteoliva SE, Graciano C (2013) Dry weight partitioning and hydraulic traits in young Pinus taeda trees fertilized with nitrogen and phosphorus in a Subtropical area. Tree Physiol 33(3):241–251. https://doi.org/10.1093/treephys/tps129
Faustino LI, Moretti AP, Graciano C (2015) Fertilization with urea, ammonium and nitrate produce different effects on growth, hydraulic traits and drought tolerance in Pinus taeda seedlings. Tree Physiol 35(10):1062–1074. https://doi.org/10.1093/treephys/tpv068
Federer CA, Hornbeck JW, Tritton LM, Martin CW, Pierce RS, Smith CT (1989) Long-term depletion of calcium and other nutrients in eastern US forests. Environ Manage 13(5):593–601. https://doi.org/10.1007/BF01874965
Ferrenberg S, Langenhan JM, Loskot SA, Rozal LM, Mitton JB (2017) Resin monoterpene defenses decline within three widespread species of pine (Pinus) along a 1530-m elevational gradient. Ecosphere 8(10):e01975. https://doi.org/10.1002/ecs2.1975
Helmisaari HS, Hallbäcken L (2000) Fine-root biomass and necromass in limed and fertilized Norway spruce (Picea abies (L.) krast.) stands. For Ecol Manag 119:99–100. https://doi.org/10.1016/S0378-1127(98)00514-3
Huber C, Baier R, Göttlein A, Weis W (2006) Changes in soil, seepage water and needle chemistry between 1984 and 2004 after liming an N-saturated Norway spruce stand at the Höglwald. Germany Ecol Manag 233(1):11–20. https://doi.org/10.1016/j.foreco.2006.05.058
INEGI (2009) Prontuario de Información Geográfica Municipal de Los Estados Unidos Mexicanos. 9. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825293147/. Accessed 7 March 2017
Jandl R, Kopeszki H, Bruckner A, Hager H (2003) Forest soil chemistry and mesofauna 20 years after an amelioration fertilization. Restor Ecol 11(2):239–246. https://doi.org/10.1046/j.1526-100X.2003.00179.x
Janusza G, Kucharzykb KH, Pawlika A, Staszczaka M, Paszczynskic AJ (2013) Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme Microb Technol 52:1–12. https://doi.org/10.1016/j.enzmictec.2012.10.003
Javier GC, Gayoso AJ, Schlatter VJ, Nespolo RR (2005) Análisis de la biomasa de raíces en diferentes tipos de bosques: avances en la evaluación de Pinus radiata en Chile. Bosque 26(1):5–21. https://doi.org/10.4067/S0717-92002005000100002
Jorge LAC, Rodrigues AFO (2008) Safira: Sistema de análise de fibras e raízes. Boletim de Pesquisa e Desenvolvimento 21. https://www.infoteca.cnptia.embrapa.br/bitstream/doc/31890/1/BPD242008.pdf/. Accessed 13 April 2017
Kanerva S, Kitunen V, Loponen J, Smolander A (2008) Phenolic compounds and terpenes in soil organic horizon layers under silver birch, Norway spruce and Scots pine. Biol Fert Soils 44(4):547–556. https://doi.org/10.1007/s00374-007-0234-6
Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB (2008) Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11(1):35–43. https://doi.org/10.1111/j.1461-0248.2007.01124.x
Lázaro-Dzul MO, Velázquez-Mendoza J, Vargas-Hernández JJ, Gómez-Guerrero A, Álvarez-Sánchez, ME, López-López MA (2012) Fertilization with nitrogen, phosphorus and potassium in Pinus patula Schl. et Cham samplings. Rev Chapingo Ser Cienc For Ambient 18(1):33–42. https://doi.org/10.5154/r.rchscfa.2011.01.001
Lehto T (1994) Effects of soil pH and calcium on mycorrhizas of Picea abies. Plant Soil 163:69–75. https://doi.org/10.1007/BF00033942
Lin H, He Z, Hao J, Tian Kai T, Jia X, Kong X, Akbar S, Bei Z, Tian X (2017) Effect of N addition on home-field advantage of litter decomposition in subtropical forests. For Ecol Manag 398:216–225. https://doi.org/10.1016/j.foreco.2017.05.015
Lopes VG, Schumacher MV, Calil FN, Viera M, Witschoreck R (2010) Fine root quantification in a Pinus taeda L. stand and in grassland area in Cambará do Sul (RS). Ciênc Florest 20(4):569–578. https://doi.org/10.5902/198050982415
Lopes VG, Schumacher MV, Müller I, Calil FN, Witschoreck R, Liberalesso E (2013) Physical and chemical soil variables affecting Pinus taeda L. fine roots distribution in northeast of Rio Grande do Sul, Brazil. Ecol Nutr Florestal 1(1):14–23. https://doi.org/10.13086/2316-980x.v01n01a02
Lopez-Escobar NF, Gómez-Guerrero A, Velázquez-Martínez A, Fierros-González AM, Castruita-Esparza LU, Vera-Castillo JAG (2017) Reservoirs and nutrient dynamics in two stands of Pinus montezumae Lamb. in Tlaxcala, Mexico. Rev Chapingo Ser Cienc for Ambient 24(1):115–129. https://doi.org/10.5154/r.rchscfa.2017.09.055
Manavalan T, Manavalan A, Heese K (2015) Characterization of lignocellulolytic enzymes from white-rot fungi. Curr Microbiol 70(4):485–498. https://doi.org/10.1007/s00284-014-0743-0
Marschner B, Wilczynski AW (1991) The effect of liming on quantity and chemical composition of soil organic matter in a pine forest in Berlin, Germany. Plant Soil 137:229–236. https://doi.org/10.1007/BF00011201
Mateirć D, Blenkhorn D, González-Méndez R, Bruhn D, Turner C, Morgan G, Mason N, Gauci V (2016) Monoterpene emission from young Scots pine may be influenced by nutrient availability. Appl Ecol Environ Res 14(4):667–681. https://doi.org/10.15666/aeer/1404_667681
Mineropar (2010) Mapa Geológico Do Estado Do Paraná: Unidades Estratigráficas. 21–22. http://www.mineropar.pr.gov.br/modules/conteudo/conteudo.php?conteudo=22/. Accessed 20 April 2017
Moro L, Gatiboni LC, Simonete MA, Cassol PC, Chaves DM (2014) Response of one-, five-, and nine-year-old Pinus taeda to NPK fertilization in Southern Brazil. Rev Bras Cienc Solo 38:1181–1189. https://doi.org/10.1590/S0100-06832014000400014
Motta ACV, Barbosa JZ, Consalter R, Reissmann CB (2014) Nutrição e adubação da cultura de pínus. In: Prado RM, Wadt PGS (eds) Nutrição e adubação de espécies florestais e palmeiras. FUNEP, Jaboticabal, pp 383–426
Noble AD, Zenneck I, Randall PJ (1996) Leaf litter ash alkalinity and neutralisation of soil acidity. Plant Soil 179(2):293–302. https://doi.org/10.1007/BF00009340
Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141(3):426–442. https://doi.org/10.1080/11263500701626069
Pértile P, Albuquerque JA, Gatiboni LC, Costa A, Warmling MI (2012) Application of alkaline waste from pulp industry to acid soil with pine. Rev Bras Cienc Solo 36(3):939–950. https://doi.org/10.1590/S0100-06832012000300024
Piovesan G, Schumacher MV, Viera M, Lopes VG, Welter C (2012) Deposição de serapilheira em povoamento de pinus. Pesqui Agropecu Trop 42(2):206–2011. https://doi.org/10.1590/S1983-40632012000200012
Praveen K, Usha KY, Viswanath B, Reddy BR (2012) Kinetic properties of manganese peroxidase from the mushroom Stereum ostrea and its ability to decolorize dyes. J Microbiol Biotech 22(11):1540–1548. https://doi.org/10.4014/jmb.1112.12011
Rabel DO, Maeda S, Araujo EM, Gomes JB, Bognolla IA, Prior SA, Magri E, Frigo C, Brasileiro BP, Santos MC, Pedreira GQ, Motta ACV (2020) Recycled alkaline paper waste influenced growth and structure of Pinus taeda L. forest. New For. https://doi.org/10.1007/s11056-020-09791-5
Reissmann CB, Wisniewski C (2015) Aspectos nutricionais de plantios de Pinus. In: Gonçalves JLM, Benedetti V (eds) Nutrição e fertilização florestal. IPEF, Piracicaba, pp 135–166
Reissmann CB, Zöttl HW (1987) Problemas nutricionais em povoamentos de Pinus taeda em áreas do arenito da Formação Rio Bonito-Grupo Guatá. Rev Setor Ciênc Agrár 75–80
Revelle W (2017) Psych: procedures for personality and psychological research
Richter DD, Markewitz D, Wells CG, Allen HL, April R, Heine PR, Urrego B (1994) Soil chemical change during three decades in an old-field loblolly pine (Pinus taeda L.) ecosystem. Ecology 75(5):1463–1473. https://doi.org/10.2307/1937469
Rodrigues CM (2004) Efeito da aplicação de resíduo da indústria de papel e celulose nos atributos químicos, físicos e biológicos do solo, na nutrição e biomassa do Pinus taeda L. Masters dissertation. Universidade Federal do Paraná
Rodríguez-Robles U, Arredondo T, Huber-Sannwald E, Ramos-Leal JA, Yépez EA (2017) Application of geophysical tools for tree root studies in forest ecosystems in complex soils. Biogeosci Discus 14:5343–5357. https://doi.org/10.5194/bg-14-5343-2017
Rosolem CA, Mateus GP, Godoy LJG, Feltran JC, Brancalião SR (2003a) Morfologia radicular e suprimento de potássio às raízes de milheto de acordo com a disponibilidade de água e potássio. Rev Bras Cienc Solo 27:875–884. https://doi.org/10.1590/S0100-06832003000500012
Rosolem CA, Silva RH, de Esteves JAF (2003b) Potassium supply to cotton roots as affected by potassium fertilization and liming. Pesqui Agropecu Bras 38(5):635–641. https://doi.org/10.1590/S0100-204X2003000500012
Samuelson LJ, Johnsen K, Stokes T (2004) Production, allocation, and stemwood growth efficiency of Pinus taeda L. stands in response to 6 years of intensive management. For Ecol Manag 192(1):59–70. https://doi.org/10.1016/j.foreco.2004.01.005
Sass AL, Bassaco MVM, Motta ACV, Maeda S, Barbosa JZ, Bognola IA, Bosco JVG, Goularte GD, Prior AS (2020) Cellulosic industrial waste to enhance Pinus taeda nutrition and growth: a study in subtropical Brazil. Sci For 48(126):e3165. https://doi.org/10.18671/scifor.v48n126.13
Sayer MAS, Goelz JCG, Chambers JL, Tang Z, Dean TJ, Haywood JD, Leduc DJ (2004) Long-term trends in loblolly pine productivity and stand characteristics in response to thinning and fertilization in the West Gulf Region. For Ecol Manag 192(1):71–96. https://doi.org/10.1016/j.foreco.2004.01.006
Sayer EJ, Wright SJ, Tanner EVJ, Yavitt JB, Harms KE, Powers JS, Kaspari M, Garcia MN, Turner BL (2012) Variable responses of lowland tropical forest nutrient status to fertilization and litter manipulation. Ecosystems 15:387–400. https://doi.org/10.1007/s10021-011-9516-9
Schumacher FX, Hall FS (1933) Logarithmic expression of timber-tree volume. J Agric Res 47(9):719–734
Schumacher MV, Viera M, Witschoreck R (2008) Litter production and nutrients transfer in a second rotation area with Pinus taeda L. forest in Cambará do Sul, RS. Ciênc Florest 18(4):471–480. https://doi.org/10.5902/19805098431
Scott DA, Bliss CM (2012) Phosphorus fertilizer rate, soil p availability, and long-term growth response in a loblolly pine plantation on a weathered ultisol. Forests 3(4):1071–1085. https://doi.org/10.3390/f3041071
Staaf H, Persson T, Bertills U (1996) Skogsmarkskalkning. Resulth och slutsatser from Naturvärdsverkets försöksverksamhet, 1st edn. Naturvärdsverket, Estocolmo, 290 p
Sun OJ, Payn TIMW (1999) Magnesium nutrition and photosynthesis in Pinus radiata: clonal variation and influence of potassium. Tree Physiol 19:535–540. https://doi.org/10.1093/treephys/19.8.535
Thirukkumaran CM, Parkinson D (2002) Microbial activity, nutrient dynamics and litter decomposition in a Canadian Rocky Mountain pine forest as affected by N and P fertilizers. For Ecol Manag 159(3):187–201. https://doi.org/10.1016/S0378-1127(01)00432-7
Trevisan E (1992) Classificação e caracterização de horizontes orgânicos sob povoamentos de Pinus taeda L. na região de Ponta Grossa—PR. (Masters dissertation) Universidade Federal do Paraná
Trichet P, Loustau D, Lambrot C, Linder S (2008) Manipulating nutrient and water availability in a maritime pine plantation: effects on growth, production, and biomass allocation at canopy closure. Ann Para Sci 65(8):814–814. https://doi.org/10.1051/forest:2008060
Trichet P, Bakker MR, Augusto L, Alazard P, Merzeau D (2009) Fifty years of fertilization experiments on Pinus pinaster in southwest France: the importance of phosphorus as a fertilizer. For Sci 55(5):390–402. https://doi.org/10.1093/forestscience/55.5.390
Ufot UF, Ite AE, Usoh IH, Akpanabiatu MI (2016) Role of some metal ions on steady–state kinetics of engineered wild–type and manganese (ii) binding site mutants of recombinant Phlebia radiata manganese peroxidase 3 (rPr-MnP3). Am J Med Biol Res 4(3):42–52. https://doi.org/10.12691/AJMBR-4-3-2
Vanninen P, Makela A (1999) Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiol 19(12):823–830. https://doi.org/10.1093/treephys/19.12.823
Vogel JG, Jokela EJ (2011) Micronutrient limitations in two managed Southern pine stands 330 planted on Florida Spodosols. Soil Sci Soc Am J 75(3):1117–1124. https://doi.org/10.2136/sssaj2010.0312
Wang L, Katzensteiner K, Schume H, van Loo M, Godbold DL (2016) Potassium fertilization affects the distribution of fine roots but does not change ectomycorrhizal community structure. Ann Sci 73(3):691–702. https://doi.org/10.1007/s13595-016-0556-3
Wienand KT, Stock WD (1995) Long-term phosphorus fertilization effects on the litter dynamics of an age sequence of Pinus elliottii plantations in the Southern Cape of South Africa. For Ecol Manag 75(1–3):135–146. https://doi.org/10.1016/0378-1127(95)03528-I
Wightman MG, Martin TA, Gonzalez-Benecke CA, Jokela EJ, Cropper WP Jr, Ward EJ (2016) Loblolly pine productivity and rater relations in response to throughfall reduction and fertilizer application on a poorly drained site in Northern Florida. Forests 7(10):214. https://doi.org/10.3390/f7100214
Winagraski E (2014) Dinâmica de ectomicorrizas em um plantio adulto de Pinus taeda submetido a adubação e calagem no município de Jaguariaiva, PR. Masters dissertation. Universidade Federal do Paraná
Wisniewski C (1989) Variação estacional da deposição de serapilheira e nutrientes em povoamentos de Pinus taeda na região de Ponta Grossa-PR. Doctoral thesis. Universidade Federal do Paraná
Yavitt JB, Harms KE, Garcia MN, Mirabello MJ, Wright SJ (2011) Soil fertility and fine root dynamics in response to 4 years of nutrient (N, P, K) fertilization in a lowland tropical moist forest. Panama Austral Ecol 36(4):433–445. https://doi.org/10.1111/j.1442-9993.2010.02157.x
Zhao D, Kane M, Borders B, Harrison M (2009) Long-term effects of site preparation treatments, complete competition control, and repeated fertilization on growth of slash pine plantations in the flatwoods of the Southeastern United States. For Sci 55(5):403–410. https://doi.org/10.1093/forestscience/55.5.403
Acknowledgements
The authors thank the Vale do Corisco and Valor Florestal Companies for field work support and staff (Renato Teixeira Lima, Antônio Mineiro, Felipe Mazurki Perucio). Dr. Antonio Motta is grateful to the National Council for Scientific and Technological Development (CNPq) for financial support and the Coordination for the Improvement of Higher Education Personnel (CAPES) for scholarship financial support.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Rüdiger Grote.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Consalter, R., Motta, A.C.V., Barbosa, J.Z. et al. Fertilization of Pinus taeda L. on an acidic oxisol in southern Brazil: growth, litter accumulation, and root exploration. Eur J Forest Res 140, 1095–1112 (2021). https://doi.org/10.1007/s10342-021-01390-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10342-021-01390-z