Skip to main content
Log in

Mid-rotation fertilization and liming effects on nutrient dynamics of Pinus taeda L. in subtropical Brazil

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Since fertilization and liming are unusual practices for managing Pinus taeda L. in Brazil, nutrient exhaustion can occur in the long term. However, recommendations are limited due to lack of studies investigating plant nutrition and nutrient biocycling. Thus, a study was established to investigate the effects of mid-rotation fertilization and liming on foliar, root, and litter nutrient composition. The use of a nutrient omission technique resulted in seven treatments: full (N, P, K, Ca, Mg, B, Zn, Cu, and Mo), -NPK, -micronutrients, -K, -Zn, -lime, and control. Trees were 5 years old when treatments were applied and 12 years old when harvested. At harvest, needle samples from the first and second flushes were collected. Litter layer samples were also collected and divided into four sublayers; the bottom fractions contained roots that were removed and analyzed separately. Fertilizer and lime application increased concentrations of P, K, Ca, Mg, S, Zn, B, and Al in the first and/or second flushes, reduced Mn, and did not change Cu and Fe. Amendment with K resulted in reduced Ca and Mg. Litter layer concentrations of amended elements (Ca, Mg, Cu, Zn, and P) and S were increased, especially in the bottom most fraction. Large accumulations of Ca, Mg, Cu, and Zn were observed in the litter and roots; smaller in K, P, S, B, and Mn were also noted. Degree of litter decomposition led to increased Fe and Al and decreased Mn. Fertilizer and lime application exerted large influences on Pinus nutrition and litter layer chemical quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achat DL, Pousse N, Nicolas M, Brédoire F, Augusto L (2016) Soil properties controlling inorganic phosphorus availability: general results from a national forest network and a global compilation of the literature. Biogeochemistry 127:255–272. https://doi.org/10.1007/s10533-015-0178-0

    Article  CAS  Google Scholar 

  • Albaugh TJ, Allen HL, Fox TR (2007) Historical patterns of forest fertilization in the southeastern United States from 1969 to 2004. South J Appl For 31:129–137

    Article  Google Scholar 

  • Albaugh TJ, Allen HL, Fox TR (2008) Nutrient use and uptake in Pinus taeda. Tree Physiol 28:1083–1098. https://doi.org/10.1093/treephys/28.7.1083

    Article  CAS  PubMed  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, Moraes GonçaLoes JL, Sparovek G (2013) Köppen’s climate classification map for Brazil. MeteorolZeitschrift 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Alves MJF, Melo VF, Reissmann CB, Kaseker JF (2013) Reserva mineral de potássio em Latossolo cultivado com Pinus taeda L. Rev Bras Cienc do Solo 37:1599–1610. https://doi.org/10.1590/S0100-06832013000600016

    Article  Google Scholar 

  • Augusto L, Achat DL, Bakker MR, Bernier F, Bert D, Danjon F, Khlifa A, Meredieu C, Trichet P (2015) Biomass and nutrients in tree root systems – sustainable harvesting of an intensively managed Pinus pinaster (Ait.) planted forest. Bioenergy 7:231–243. https://doi.org/10.1111/gcbb.12127

    Article  CAS  Google Scholar 

  • Bakker MR, Jolicoeur E, Trichet P, Augusto L, Plassard C, Guinberteau J, Loustau D (2009) Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand. Tree Physiol 29:229–238. https://doi.org/10.1093/treephys/tpn020

    Article  CAS  PubMed  Google Scholar 

  • Batista AH, Motta ACV, Reissmann CB, Schneider T, Martins IL, Hashimoto M (2015) Liming and fertilisation in Pinus taeda plantations with severe nutrient deficiency in savanna soils. Acta Sci Agron 37:117–125. https://doi.org/10.4025/actasciagron.v37i1.18061

    Article  Google Scholar 

  • Berg B, Erhagen B, Johansson MB, Vesterdal L, Faituri M, Sanborn P, Nilsson M (2013) Manganese dynamics in decomposing needle and leaf litter-a synthesis. Can J For Res 43:1127–1136

    Article  CAS  Google Scholar 

  • Berthrong ST, Jobbágy EG, Jackson RB (2009) A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol Appl 19(8):2228–2241

    Article  Google Scholar 

  • Blagodatskaya EV, Anderson TH (1998) Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and QCO2 of microbial communities in forest soils. Soil Biol Biochem 30:1269–1274. https://doi.org/10.1016/S0038-0717(98)00050-9

    Article  CAS  Google Scholar 

  • Brandtberg PO, Simonsson M (2003) Aluminum and iron chemistry in the O horizon changed by a shift in tree species composition. Biogeochemistry 63:207–228

    Article  CAS  Google Scholar 

  • Bravo S, Amorós JA, Pérez-De-Los-Reyes C, García FJ, Moreno MM, Sánchez-Ormeño M, Higueras P (2017) Influence of the soil pH in the uptake and bioaccumulation of heavy metals (Fe, Zn, Cu, Pb and Mn) and other elements (Ca, K, Al, Sr and Ba) in vine leaves, Castilla-La Mancha (Spain). J Geochem Explor 174:79–83. https://doi.org/10.1016/j.gexplo.2015.12.012

    Article  CAS  Google Scholar 

  • Brunner I, Sperisen C (2013) Aluminum exclusion and aluminum tolerance in woody plants. Front Plant Sci 4:1–12. https://doi.org/10.3389/fpls.2013.00172

    Article  Google Scholar 

  • Carlson CA, Fox TR, Allen HL, Albaugh TJ, Rubilar RA, Stape JL (2013) Growth responses of loblolly pine in the Southeast United States to midrotation applications of nitrogen, phosphorus, potassium, and micronutrients. For Sci 60:157–169

    Google Scholar 

  • Chaves RQ, Corrêa (2003) Micronutrients in the soil—Pinus caribaea Morelet system with yellowing of the needles followed by senescence and death. Rev Árvore 27:769–778

    Article  CAS  Google Scholar 

  • Chaves RQ, Corrêa GF (2005) Macronutrients in the soil- Pinus caribaea Morelet system with yellowing of the needles followed by senescence and death. Rev. Árvore 29:691–700

    Article  CAS  Google Scholar 

  • Chen L, Mu X, Yuan Z, Deng Q, Chen Y, Yuan LY, Ryan LT, Kallenbach RL (2016) Soil nutrients and water affect the age-related fine root biomass but not production in two plantation forests on the Loess Plateau. China J Arid Environ 135:173–180. https://doi.org/10.1016/j.jaridenv.2016.09.003

    Article  Google Scholar 

  • Clarholm M, Skyllberg U, Rosling A (2015) Organic acid induced release of nutrients from metal-stabilized soil organic matter— The unbutton model. Soil Biol Biochem 84:168–176. https://doi.org/10.1016/j.soilbio.2015.02.019

    Article  CAS  Google Scholar 

  • de Rabel D O, Maeda S, Araujo EM, Gomes JB, Bognolla IA, Prior SA, Magri E, Frigo C, Brasileiro BP, dos Santos MC, Pedreira GQ, Motta ACV (2020) Recycled alkaline paper waste influenced growth and structure of Pinus taeda forest. New Forest. https://doi.org/10.1007/s11056-020-09791-5

    Article  Google Scholar 

  • Eimil-Fraga C, Sánchez-Rodríguez F, ÁLoarez-Rodríguez X E, Rodríguez-Soalleiro (2015) Variability in needle lifespan and foliar biomass along a gradient of soil fertility in maritime pine plantations on acid soils rich in organic matter. For Ecol Manage 343:34–41. https://doi.org/10.1016/j.foreco.2015.01.030

    Article  Google Scholar 

  • EMBRAPA (2009) Manual de análises químicas de solos, plantas e fertilizantes, 2nd edn. Informação Tecnológica, Brasília, p 628

    Google Scholar 

  • Favaretto N, Motta ACV, Barcik C, Lustosa SBC, Comin JJ (2007) Shoot and root responses of Trifoliumvesiculosum to boron fertilization in an acidic Brazilian soil. Braz Arch Biol Technol 50(4):597–604

    Article  CAS  Google Scholar 

  • Fox TR, Jokela EJ, Allen HL (2007) The development of pine plantation silviculture in the southern United States. J. For. 105(7):337–347

    Google Scholar 

  • Gatiboni LC, Da Silva WC, Mumbach GL, Schmitt DE, Iochims DA, Stahl J, Vargas CO (2020) Use of exchangeable and nonexchangeable forms of calcium, magnesium, and potassium in soils without fertilization after successive cultivations with Pinus taeda in southern Brazil. J Soils Sedim 20(2):665–674

    Article  CAS  Google Scholar 

  • Gielen SI, Batlle JV, Vincke C, Van Heesa M, Vandenhovea H (2016) Concentrations and distributions of Al, Ca, Cl, K, Mg and Mn in a Scots pine forest in Belgium. Ecol Model 324:1–10. https://doi.org/10.1016/j.ecolmodel.2015.12.015

    Article  CAS  Google Scholar 

  • Goldberg S, Forster HS, Heick EL (1993) Boron adsorption mechanisms on oxides, clay minerals and soils inferred from ionic strength effects. Soil Sci Soc Am J 57:704–708

    Article  CAS  Google Scholar 

  • Gómez-Armesto A, Carballeira-Díaz J, Perez-Rodríguez P, Fernández-CaLoiño D, Arias-Estévez M, Nóvoa-Muñoz JC, ÁLoarez-Rodríguez E (2015) Copper content and distribution in vineyard soils from Betanzos (A Coruña, Spain). Span J Soil Sci 5:60–71. https://doi.org/10.3232/SJSS.2015.V5.N1.06

    Article  Google Scholar 

  • Goya JF, Frangi JL, Tea FD (2008) Decomposition and nutrient release from leaf litter in Eucalyptus grandis plantations on three different soils in Entre Ríos, Argentina. Ecology 29:217–226. https://doi.org/10.4067/S0717-92002008000300005

    Article  Google Scholar 

  • Grobelak A, Placek A, Grosser A, Singh BR, Almas AR, Napora A, Kacprzak M (2016) Effects of single sewage sludge application on soil phytoremediation. J Clean Prod 155:189–197. https://doi.org/10.1016/j.jclepro.2016.10.005

    Article  CAS  Google Scholar 

  • Hernandez-Soriano MC, Peña A, Mingorance MD (2013) Soluble metal pool as affected by soil addition with organic inputs. Environ Toxicol Chem 32:1027–1032. https://doi.org/10.1002/etc.2159

    Article  CAS  PubMed  Google Scholar 

  • Janssens IA, Sampson DA, Cermak J, Meiresonne L, Riguzzi F, Overloop S, Ceulemans R (1999) Above-and belowground phytomass and carbon storage in a Belgian Scots pine stand. Ann For Sci 56:81–90

    Article  Google Scholar 

  • Jonczak J (2014) Effect of land use on the carbon and nitrogen forms in humic horizons of stagnicLuvisols. J Elem 73:1037–1048. https://doi.org/10.5601/jelem.2014.19.3.345

    Article  Google Scholar 

  • Jonczak J, Parzych A, Zbigniew S (2015) Decomposition of four tree species leaf litters in headwater riparian forest. Balt For 21:133–143

    Google Scholar 

  • Kerndorff H, Schnitzer M (1980) Sorption of metals on humic acid. Geochim Cosmochim Ac 44:1701–1708

    Article  CAS  Google Scholar 

  • Lehto T (1995) Boron retention in limed forest mor. For Ecol Manage 78:11–20. https://doi.org/10.1016/0378-1127(95)03599-7

    Article  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York, p 472

    Google Scholar 

  • Londero EK, Schumacher MV, Szymczak DA, Viera M (2011) Exportação e reposição nutricional no primeiro desbaste de um povoamento de Pinus taeda L. em área de segunda rotação. Ciência Florest 21:487–497. https://doi.org/10.1155/2011/761532

    Article  Google Scholar 

  • Lopes VG, Schumacher MV, Müller I, Calil FN, Witschoreck R, Liberalesso E (2013) Physical and chemical soil variables affecting Pinus taeda L. fine roots distribution in northeast of Rio Grande do Sul, Brazil. Ecol e Nutr Florest 1:14–23. https://doi.org/10.13086/2316-980x.v01n01a02

    Article  Google Scholar 

  • Lopez-Escobar NF, Gómez-Guerrero A, Velázquez-Martínez A, Fierros-González AM, Castruita-Esparza LU, Vera-Castillo JAG (2017) Reservoirs and nutrient dynamics in two stands of Pinus montezumae Lamb. in Tlaxcala, Mexico. Revista Chapingo Serie Ciencias Forestales y Del Ambiente 24:115–129. https://doi.org/10.5154/r.rchscfa.2017.09.055

    Article  Google Scholar 

  • Maggard AO, Will RE, Wilson DS, Meek CR, Vogel JG (2016) Fertilization reduced stomatal conductance but not photosynthesis of Pinus taeda which compensated for lower water availability in regards to growth. For Ecol Manage 381:37–47. https://doi.org/10.1016/j.foreco.2016.08.046

    Article  Google Scholar 

  • Maggard AO, Will RE, Wilson DS, Meek CR, Vogel JG (2017) Fertilization can compensate for decreased water availability by increasing the efficiency of stem volume production per unit of leaf area for loblolly pine (Pinus taeda) stands. Can J For Res 47:445–457. https://doi.org/10.1139/cjfr-2016-0422

    Article  Google Scholar 

  • Marschner H (2012) Marschner’s mineral nutrition of higher plants, 3a. Elsevier Ltd, London, p 672

    Google Scholar 

  • Marschner B, Wilczynski AW (1991) The effect of liming on quantity and chemical composition of soil organic matter in a pine forest in Berlin, Germany. Plant Soil 137:229–236. https://doi.org/10.1007/BF00011201

    Article  CAS  Google Scholar 

  • Martins APL, Reissmann CB (2007) Material vegetal e as rotinas laboratoriais nos procedimentos químico-analíticos. Sci Agraria 8:1–17. https://doi.org/10.5380/rsa.v8i1.8336

    Article  Google Scholar 

  • Meier IC, Finzi AC, Phillips RP (2017) Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biol Biochem 106:119–128. https://doi.org/10.1016/j.soilbio.2016.12.004

    Article  CAS  Google Scholar 

  • Merritt KA, Erich MS (2003) Influence of organic matter decomposition on soluble carbon and its copper-binding capacity. J Environ Qual 32:2122–2131. https://doi.org/10.2134/jeq2003.2122

    Article  CAS  PubMed  Google Scholar 

  • MINEROPAR (2010) Mapa Geológico do estado do Paraná: Unidades Estratigráficas. http://www.mineropar.pr.gov.br/modules/conteudo/conteudo.php?conteudo=22. Accessed 2017

  • Mitchell AD (2000) Magnesium fertiliser effects on forest soils under Pinus radiata: a thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey University, Palmerston North, New Zealand (Doctoral dissertation, Massey University). p 247

  • Moro L, Colpo Gatiboni L, Simonete MA, Cassol PC, Miler Chaves D (2014) Resposta de Pinus taeda com diferentes idades à adubação NPK no Planalto Sul Catarinense. Rev Bras Ciênc Solo 38:1181–1189

    Article  Google Scholar 

  • Motta ACV, Barbosa JZ, Consalter R, Reissmann CB (2014) Nutrição e Adubação da Cultura de Pinus. In: Wadt PGS, Prado R de M (eds) Nutrição e adubação de espécies florestais e palmeiras, 1st edn. FUNEP, Jaboticabal, pp 383–426

    Google Scholar 

  • Pavan MA, Correa AE (1988) Reações de equilíbrio solo-boro. Pesqui Agropecu Bras 23:261–269

    Google Scholar 

  • Pegoraro RF, SiLoa IR, Novais RF, Mendonca ES, Gebrim FO, Moreira FF (2006) Fluxo difusivo e biodisponibilidade de zinco, cobre, ferro e manganês no solo: influência da calagem, textura do solo e resíduos vegetais. Rev Bras Cienc Solo 30:859–868. https://doi.org/10.1590/S0100-06832006000500012

    Article  CAS  Google Scholar 

  • Pehlivan E, Arslan G (2006) Uptake of metal ions on humic acids. Energ Source Part A28:1099–1112. https://doi.org/10.1080/009083190910451

    Article  CAS  Google Scholar 

  • Peuke AD, Jeschke WD, Hartung W (2002) Flows of elements, ions and abscisic acid in Ricinus communis and site of nitrate reduction under potassium limitation. J Exp Bot 367:241–250. https://doi.org/10.1093/jexbot/53.367.241

    Article  Google Scholar 

  • Reissmann CB, Wisniewski C (2000) Aspectos nutricionais de plantios de Pinus. In: GonçaLoes JLMBV (ed) Nutrição e fertilização florestal, 3rd edn. IPEF, Piracicaba, pp 135–165

    Google Scholar 

  • Reissmann CB, Zöttl HW (1987) Problemas nutricionais em povoamentos de Pinus taeda em áreas do arenito da formação Rio Bonito-Grupo Guatá. Rev Set Ciênc Agrár 9:75–80

    Google Scholar 

  • Revelle W (2017) Psych: Procedures for Personality and Psychological Research. Software

  • Rosas-Patiño G, Puentes-Páramo YJ, Menjivar-Flores JC (2017) Relación entre el pH y ladisponibilidad de nutrientes para cacaoenunentisol de la Amazonia colombiana. Corpoica Ciênc Tecnol Agropecu 18:529–541

    Article  Google Scholar 

  • Rosolem CA, Mateus GP, Godoy LJG, Feltran JC, Brancalião SR (2003) Morfologia radicular e suprimento de potássio às raízes de milheto de acordo com a disponibilidade de água e potássio. Rev Bras Cienc Solo 27:875–884

    Article  CAS  Google Scholar 

  • Sardans J, Alonso R, Janssens IA, Carnicer J, Vereseglou S, Rillig MC, Fernández-Martínez M, Sanders TGM, Peñuelas J (2016) Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: relationships with climate, N deposition and tree growth. Funct Ecol 30:676–689. https://doi.org/10.1111/1365-2435.12541

    Article  Google Scholar 

  • Sass, A (2016) Cellulosic industrial waste only to improve the growth and nutrition of pinus taeda. UFPR. (master dissertation)

  • Schumacher MV, Viera M, Witschoreck R (2008) Produção de serapilheira e transferência de nutrientes em área de segunda rotação com floresta de Pinus taeda L. no município de Cambará do Sul, RS. Ciênc Florest 18:471–480

    Article  Google Scholar 

  • Shepard JP, Mitchell MJ (1990) Nutrient cycling in a red pine plantation thirty-nine years after potassium fertilization. Soil Sci Soc Am J 54:1433–1440. https://doi.org/10.2136/sssaj1991.03615995005500050041x

    Article  CAS  Google Scholar 

  • Sims T (1986) Soil pH effects on the distribution and plant availability of manganese, copper, and zinc. Soil Sci Soc Am J 50:367–373

    Article  CAS  Google Scholar 

  • Sixel RMM, Arthur Junior JC, GonçaLoes JLM, ALoares CA, Andrade GRP, Azevedo AC, Stahl J, Moreira AM (2015) Sustainability of wood productivity of Pinus taeda based on nutrient export and stocks in the biomass and in the soil. Rev Bras Ciênc Solo 39:1416–1427. https://doi.org/10.1590/01000683rbcs20140297

    Article  CAS  Google Scholar 

  • Stanislawska-Glubiak E, Korzeniowska J, Kocon A (2014) Effect of peat on the accumulation and translocation of heavy metals by maize grown in contaminated soils. Environ Sci Pollut Res 22:4706–4714. https://doi.org/10.1007/s11356-014-3706-x

    Article  CAS  Google Scholar 

  • Stewart BA (1989) Advances in soil science. Springer, New York, p 112

    Book  Google Scholar 

  • Sun OJ, Payn TW (1999) Magnesium nutrition and photosynthesis in Pinus radiata: clonal variation and influence of potassium. Tree Physiol 19:535–540

    Article  CAS  Google Scholar 

  • Sypert RH (2006) Diagnosis of Loblolly Pine (Pinus taeda L.) Nutrient deficiencies by foliar methods. Virginia Polytechnic Institute and State University (Masters Theses, Virginia Tech). p 123

  • Vanguelova EI, Nortcliff S, Moffat AJ, Kennedy F (2005) Morphology, biomass and nutrient status of fine roots of Scots pine (Pinus sylvestris) as influenced by seasonal fluctuations in soil moisture and soil solution chemistry. Plant Soil 270:233–247. https://doi.org/10.1007/s11104-004-1523-6

    Article  CAS  Google Scholar 

  • Vanguelova EI, Hirano Y, Eldhuset TD, Sas-Paszt L, Bakker MR, Püttsepp Ü, Brunner I, Lõhmus K, Godbold D (2007) Tree fine root Ca/Al molar ratio - Indicator of Al and acidity stress. Plant Biosyst 141:460–480. https://doi.org/10.1080/11263500701626192

    Article  Google Scholar 

  • Viera M, Schumacher MV (2009) Concentração e retranslocação de nutrientes em acículas de Pinus taeda L. Ciênc Florest 19:375–382

    Article  Google Scholar 

  • Viera M, Schumacher MV (2010) Teores e aporte de nutrientes na serapilheira de Pinus taeda L., e sua relação com a temperatura do ar e pluviosidade. Rev Árvore 34:85–94. https://doi.org/10.1590/S0100-67622010000100010

    Article  CAS  Google Scholar 

  • Vogel JG, Jokela EJ (2011) An examination of micronutrient limitations in two young managed southern pine stands planted on Florida spodosols. Soil Sci Soc Am J 75:1117–1124

    Article  CAS  Google Scholar 

  • Wang L, Katzensteiner K, Schume H, van Loo M, Godbold DL (2016) Potassium fertilization affects the distribution of fine roots but does not change ectomycorrhizal community structure. Ann For Sci 73:691–702. https://doi.org/10.1007/s13595-016-0556-3

    Article  Google Scholar 

  • Wilks P, Wang H (2009) The Rabbit Island biosolids project. New Zeal. J For 54:33–36

    Google Scholar 

  • Xue J, Kimberley MO, Ross C, Louis GG, Tremblay A, Champeau O, Horswell J, Wang H (2015) Ecological impacts of long-term application of biosolids to a radiata pine plantation. Sci Total Environ 530–531:233–240. https://doi.org/10.1016/j.scitotenv.2015.05.096

    Article  CAS  PubMed  Google Scholar 

  • Yanai RD, Phillips RP, Arthur MA, Siccama TG, Hane EN (2005) Spatial and temporal variation in calcium and aluminum in northern hardwood litters. Water Air Soil Pollut 160:109–118. https://doi.org/10.1007/s11270-005-3940-4

    Article  CAS  Google Scholar 

  • Zadworny M, Mccormack ML, Mucha J, Reich PB, Oleksynet J (2016) Scots pine fine roots adjust along a 2000-km latitudinal climatic gradient. New Phytol 212:389–399. https://doi.org/10.1111/nph.14048

    Article  PubMed  Google Scholar 

  • Zetterberg T, Olsson BA, Löfgren S, Hyvönenb R, Brandtbergb PO (2016) Long-term soil calcium depletion after conventional and whole-tree harvest. For Ecol Manage 369:102–115. https://doi.org/10.1016/j.foreco.2016.03.027

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Vale do Corisco and Valor Florestal Companies for the field work support and staff (Renato Teixeira Lima, Antônio—Mineiro, Felipe Mazurki Perucio). ACVM is grateful to National Council for Scientific and Technological Development (CNPq) for the financial support and Coordination for the Improvement of Higher Education Personnel (CAPES) for the financial support (scholarships).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Vinícius Martins Bassaco.

Additional information

Communicated by Agustín Merino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Consalter, R., Barbosa, J.Z., Prior, S.A. et al. Mid-rotation fertilization and liming effects on nutrient dynamics of Pinus taeda L. in subtropical Brazil. Eur J Forest Res 140, 19–35 (2021). https://doi.org/10.1007/s10342-020-01305-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-020-01305-4

Keywords