Skip to main content
Log in

Effects of biotic and abiotic factors on δ15N in young Pinus radiata

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

In a 12-year-old Pinus radiata plantation, three dominant and three suppressed trees removed by thinning were randomly selected, and needles, annual rings from basal stem disks and bark were collected and analyzed to study the relationships of climate, tree age, dominance and growth with tree δ15N. The high foliar N concentration (1.35–2.73 % N, dw) suggested that N was not limiting tree growth, therefore allowing plants to fractionate versus δ15N, leading to differences in δ15N among trees. Most wood δ15Nair values were below the δ15Nair natural abundance in the dominant pines (−2.43 to +1.69 ‰) and above it in the suppressed trees (+0.73 to +3.35 ‰), likely due to the access of dominants to exogenous N sources with lower δ15Nair than those of suppressed. However, no dominance effect was detected in δ15Nair of bark and needles that decreased in the order: buds (+1.20 to +2.44 ‰) > needles 1 year (−0.27 to +1.43 ‰) > needles 2 years (−0.97 to +0.41 ‰) > bark (−1.18 to +0.15 ‰). Compared with the soil N in the 0–15 cm layer (δ15Nair = +4.8 ‰), all plant material was 15N-depleted. Results suggest that seedlings and foliar buds have a less efficient system for N conservation and recycling, with higher losses. The linear regression models showed that both biotic (dominance and tree age) and abiotic factors (temperature in spring–summer and annual precipitation) are needed to explain the wood δ15Nair satisfactorily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bown HE, Watt MS, Clinton PW, Mason EG (2010) Influence of ammonium and nitrate supply on growth, dry matter partitioning, N uptake and photosynthetic capacity of Pinus radiata seedlings. Trees Struct Funct 24(6):1097–1107. doi:10.1007/s00468-010-0482-1

    Article  CAS  Google Scholar 

  • Bukata AR, Kyser TK (2005) Response of the nitrogen isotopic composition of tree-rings following tree-clearing and land-use change. Environ Sci Technol 39(20):7777–7783. doi:10.1021/es050733p

    Article  CAS  PubMed  Google Scholar 

  • Burton J, Chen CR, Xu ZH, Ghadiri H (2007) Gross nitrogen transformations in adjacent native and plantation forest’s of subtropical Australia. Soil Biol Biochem 39(2):426–433. doi:10.1016/j.soilbio.2006.08.011

    Article  CAS  Google Scholar 

  • Cantón FR, Suárez MF, Cánovas FM (2005) Molecular aspects of nitrogen mobilization and recycling in trees. Photosynth Res 83(2):265–278. doi:10.1007/s11120-004-9366-9

    Article  PubMed  Google Scholar 

  • Choi WJ, Chang SX, Allen HL, Kelting DL, Ro HM (2005a) Irrigation and fertilization effects on foliar and soil carbon and nitrogen isotope ratios in a loblolly pine stand. For Ecol Manag 213:90–101. doi:10.1016/j.foreco.2005.03.016

    Article  Google Scholar 

  • Choi WJ, Lee SM, Chang SX, Ro HM (2005b) Variations of δ 13C and δ 15N in Pinus densiflora tree-rings and their relationship to environmental changes in eastern Korea. Water Air Soil Pollut 164(1–4):173–187. doi:10.1007/s11270-005-2253-y

    Article  CAS  Google Scholar 

  • Couto-Vázquez A, González-Prieto SJ (2010) Effects of climate, tree age, dominance and growth on δ15N in young pinewoods. Trees 24(3):507–514. doi:10.1007/s00468-010-0420-2

    Article  Google Scholar 

  • Dawson TE, Siegwolf RTW (2007) Stable isotopes as indicators of ecological change. Terrestrial Ecology Series, Elsevier

    Google Scholar 

  • Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559

    Article  Google Scholar 

  • Elhani S, Guehl JM, Nys C, Picard JF, Dupouey JL (2005) Impact of fertilization on tree-ring δ 15N and δ 13C in beech stands: a retrospective analysis. Tree Physiol 25(11):1437–1446

    Article  CAS  PubMed  Google Scholar 

  • Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6(3):121–126

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Rodeja E, Fernandez-Sanjurjo MJ, Fernandez-Vega V (1998) Input–output ion fluxes in the River Sor catchment (Galicia, NW Spain). Chemosphere 36(4–5):1107–1112. doi:10.1016/s0045-6535(97)10180-1

    Article  Google Scholar 

  • Gower ST, Hunter A, Campbell J, Vogel J, Veldhuis H, Harden J, Trumbore S, Norman JM, Kucharik CJ (2000) Nutrient dynamics of the southern and northern BOREAS boreal forests. Ecoscience 7(4):481–490

    Google Scholar 

  • Hobbie JE, Hobbie EA (2006) 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology 87(4):816–822

    Article  PubMed  Google Scholar 

  • Högberg P (1997) Tansley review No. 95–15N natural abundance in soil–plant systems. New Phytol 137(2):179–203

    Article  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM (1997) Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385(6611):59–61. doi:10.1038/385059a0

    Article  CAS  Google Scholar 

  • Malaguti D, Millard P, Wendler R, Hepburn A, Tagliavini M (2001) Translocation of amino acids in the xylem of apple (Malus domestica Borkh.) trees in spring as a consequence of both N remobilization and root uptake. J Exp Bot 52(361):1665–1671. doi:10.1093/jexbot/52.361.1665

    Article  CAS  PubMed  Google Scholar 

  • McDonald PM, Laacke RJ (1990) Pinus radiata D. Don. Monterey pine. In: Burns RM, Honkala BH (eds) Silvics of North America: 1. Conifers. Agriculture Handbook 654. U.S. Dept. of Agriculture, Forest Service, Washington, p 675

    Google Scholar 

  • McLauchlan KK, Craine JM, Oswald WW, Leavitt PR, Likens GE (2007) Changes in nitrogen cycling during the past century in a northern hardwood forest. Proc Natl Acad Sci USA 104(18):7466–7470. doi:10.1073/pnas.0701779104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Merino A, Rodríguez-López A, Brañas J, Rodríguez-Soalleiro R (2003) Nutrition and growth in newly established plantations of Eucalyptus globulus in northwestern Spain. Ann For Sci 60(6):509–517

    Article  Google Scholar 

  • Merino A, Balboa MA, Rodríguez-Soalleiro R, Álvarez-Gonzalez JG (2005) Nutrient exports under different harvesting regimes in fast-growing forest plantations in southern Europe. For Ecol Manag 207(3):325–339

    Article  Google Scholar 

  • Nadelhoffer KJ, Fry B (1994) Nitrogen isotope studies in forests. In: Lajtha K, Michener RH (eds) Stable isotopes studies in ecology and environmental science. Blackwell, Oxford, pp 22–62

    Google Scholar 

  • Nadelhoffer KJ, Downs MR, Fry B (1999) Sinks for 15N-enriched additions to an oak forest and a red pine plantation. Ecol Appl 9(1):72–86

    Article  Google Scholar 

  • Pallardy SG (2008) Physiology of woody plants, 3rd edn. Academic Press, New York

    Google Scholar 

  • Piccolo MC, Neill C, Melillo JM, Cerri CC, Steudler PA (1996) 15N natural abundance in forest and pasture soils of the Brazilian Amazon Basin. Plant Soil 182(2):249–258. doi:10.1007/bf00029056

    CAS  Google Scholar 

  • Poulson SR, Chamberlain CP, Friedland AJ (1995) Nitrogen isotope variation of tree-rings as a potential indicator of environmental-change. Chem Geol 125(3–4):307–315

    Article  CAS  Google Scholar 

  • Robinson D (2001) δ 15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16(3):153–162

    Article  PubMed  Google Scholar 

  • Sánchez-Rodríguez F, Rodríguez-Soalleiro R, Español E, López CA, Merino A (2002) Influence of edaphic factors and tree nutritive status on the productivity of Pinus radiata D. Don plantations in northwestern Spain. For Ecol Manag 171(1–2):181–189

    Article  Google Scholar 

  • Saurer M, Cherubini P, Ammann M, De Cinti B, Siegwolf R (2004) First detection of nitrogen from NOx in tree rings: a 15N/14N study near a motorway. Atmos Environ 38(18):2779–2787. doi:10.1016/j.atmosenv.2004.02.037

    Article  CAS  Google Scholar 

  • Savard MM, Bégin C, Smirnoff A, Marion J, Rioux-Paquette E (2009) Tree-ring nitrogen isotopes reflect anthropogenic NOx emissions and climatic effects. Environ Sci Technol 43(3):604–609. doi:10.1021/es802437k

    Article  CAS  PubMed  Google Scholar 

  • Schulze ED (1989) Air pollution and forest decline in a spruce (Picea abies) forest. Science 244:776–783

    Article  CAS  PubMed  Google Scholar 

  • Schwinning S, Weiner J (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113(4):447–455. doi:10.1007/s004420050397

    Article  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Takashima T, Hikosaka K, Hirose T (2004) Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ 27(8):1047–1054. doi:10.1111/j.1365-3040.2004.01209.x

    Article  CAS  Google Scholar 

  • Vitoria L, Otero N, Soler A, Canals A (2004) Fertilizer characterization: isotopic data (N, S, O, C, and Sr). Environ Sci Technol 38(12):3254–3262

    Article  CAS  PubMed  Google Scholar 

  • Will GM (1985) Nutrient deficiencies and fertiliser use in New Zealand exotic forests. FRI Bulletin. No. 97. New Zealand Forest Service, Rotorua, New Zealand

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaass EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was done on the experimental stands setup by Doctors A. Rojo Alboreca, J.G. Álvarez González and R. Rodríguez Soalleiro, to who the authors thank their invaluable collaboration, and supported by the project AGL2004-07976-C02-02-FOR from the Spanish Ministery of Science and Technology. The participation of A. Couto-Vázquez was supported by a predoctoral CSIC-I3P contract. The isotopic ratio mass spectrometer was partly financed by the European Regional Development Fund (EU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serafín J. González-Prieto.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couto-Vázquez, A., González-Prieto, S.J. Effects of biotic and abiotic factors on δ15N in young Pinus radiata . Eur J Forest Res 133, 631–637 (2014). https://doi.org/10.1007/s10342-014-0791-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-014-0791-9

Keywords

Navigation