Skip to main content

Advertisement

Log in

Fungal root pathogen (Heterobasidion parviporum) increases drought stress in Norway spruce stand at low elevation in the Alps

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Tree-ring patterns of Picea abies (L.) Karst. both unaffected and affected by Heterobasidion parviporum were analysed in three mature stands located at different elevations in the Eastern Alps. The main objectives were (1) to clarify the role of climatic conditions on infected trees; (2) to estimate indirect volume losses due to the prolonged presence of the fungus within the wood. The low elevation site showed the highest growth decline in the last decade, whereas all infected trees at medium and high elevation showed a slow growth decline over many decades. We hypothesise that infection could be dated over 80 years at the highest site. Fungal attack made P. abies more susceptible to drought stress at low elevation site. Both infected and healthy P. abies at medium and high elevation showed similar climate–growth relationships, suggesting that the same driving environmental factors influence their growth. At low elevation, H. parviporum was seemingly more aggressive, causing a more rapid decline, decreasing the ability of host trees to cope with drought and, in some cases, inducing cambial activity to stop. P. abies at higher elevation, however, exhibited a very slow decline and no sign of increasing water stress since the influence of climate on tree growth was the same for both infected and healthy trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arvidson B (1975) A study of the economic effects of root rot (Polyporus annosus) in the Norway Spruce. Translation, Environment Canada

  • Auer I, Boehm R, Jurkovic A et al (2007) HISTALP: historical instrumental climatological surface time series of the Greater Alpine Region RID C-8718-2009 RID A-2447-2011. Int J Climatol 27:17–46. doi:10.1002/joe.1377

    Article  Google Scholar 

  • Battipaglia G, Saurer M, Cherubini P et al (2009) Tree rings indicate different drought resistance of a native (Abies alba Mill.) and a nonnative (Picea abies (L.) Karst.) species co-occurring at a dry site in Southern Italy RID D-4121-2009. For Ecol Manag 257:820–828. doi:10.1016/j.foreco.2008.10.015

    Article  Google Scholar 

  • Benz-Hellgren M, Stenlid J (1995) Long-term reduction in the diameter growth of butt rot affected Norway spruce, Picea abies. For Ecol Manag 74:239–243. doi:10.1016/0378-1127(95)03530-N

    Article  Google Scholar 

  • Biondi F (1997) Evolutionary and moving response functions in dendroclimatology. Dendrochronologia 15:139–150

    Google Scholar 

  • Biondi F (2000) Are climate-tree growth relationships changing in North-Central Idaho, USA RID G-2536-2010. Arct Antarct Alp Res 32:111–116. doi:10.2307/1552442

    Article  Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies RID G-2536-2010. Comput Geosci 30:303–311. doi:10.1016/j.cageo.2003.11.004

    Article  Google Scholar 

  • Bloomberg W, Hall AA (1986) Effects of laminated root rot on relationships between stem growth and root-system size, morphology, and spatial distribution in Douglas-fir. For Sci 32:202–219

    Google Scholar 

  • Bloomberg W, Morrison D (1989) Relationship of growth reduction in Douglas-fir to infection by Armillaria root disease in southeastern British-Columbia. Phytopathology 79:482–487. doi:10.1094/Phyto-79-482

    Article  Google Scholar 

  • Bloomberg W, Reynolds G (1985) Growth loss and mortality in laminated root-rot infection centers in 2nd-growth Douglas-fir on Vancouver-island. For Sci 31:497–508

    Google Scholar 

  • Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124. doi:10.1016/j.dendro.2008.01.002

    Article  Google Scholar 

  • Capretti P, Korhonen K, Mugnai L, Romagnoli C (1990) An intersterility group of Heterobasidion annosum specialized to Abies alba. Eur J For Pathol 20:231–240

    Article  Google Scholar 

  • Cherubini P, Fontana G, Rigling D et al (2002) Tree-life history prior to death: two fungal root pathogens affect tree-ring growth differently. J Ecol 90:839–850. doi:10.1046/j.1365-2745.2002.00715.x

    Article  Google Scholar 

  • Cook ER (1985) A time series approach to tree-ring standardization. Thesis dissertation, University of Arizona, Arizona

  • Cook ER, Holmes RL (1984) Program ARSTAN users manual. Laboratory of tree ring research. University of Arizona, Arizona

    Google Scholar 

  • Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in the environmental sciences. Kluwer, Dordrecht

    Google Scholar 

  • Cook E, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370. doi:10.1177/095968369700700314

    Article  Google Scholar 

  • Dai Y, Vainio E, Hantula J et al (2003) Investigations on Heterobasidion annosum s. lat. in central and eastern Asia with the aid of mating tests and DNA fingerprinting. For Pathol 33:269–286. doi:10.1046/j.1439-0329.2003.00328.x

    Article  Google Scholar 

  • Desprez-Loustau ML, Marcais B, Nageleisen LM et al (2006) Interactive effects of drought and pathogens in forest trees. Ann For Sci 63:597–612. doi:10.1051/forest:2006040

    Article  Google Scholar 

  • Dobbertin M, Baltensweiler A, Rigling D (2001) Tree mortality in an unmanaged mountain pine (Pinus mugo var. uncinata) stand in the Swiss National Park impacted by root rot fungi. For Ecol Manag 145:79–89. doi:10.1016/S0378-1127(00)00576-4

    Article  Google Scholar 

  • Fischlin A, Midgley GF, Price J et al (2007) Ecosystems, their properties, goods and services. In: Parry ML, et al. (eds) Climate change 2007: impacts, adaptation and vulnerability. Contrib. Working group II to the 4th assessment rep. Intergovernmental panel on climate change, Cambridge, pp 211–272

  • Frank D, Esper J, Cook ER (2007) Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys Res Lett. doi:10.1029/2007GL030571

    Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Gärtner H, Nievergelt D (2010) The core-microtome: a new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia 28:85–92. doi:10.1016/j.dendro.2009.09.002

    Article  Google Scholar 

  • Gonzalez IG (2001) WEISER: a computer program to identify event and pointer years in dendrochronological series. Dendrochronologia 19:239–244

    Google Scholar 

  • Grissino-Mayer HD, Holmes RL, Fritts HC (1996) The international tree ring data bank program library version 2.0. Users’s manual. Laboratory of Tree Ring Research, Arizona

  • Guiot J (1991) The bootstrapped response function. Tree-Ring Bull 51:39–41

    Google Scholar 

  • Helama S, Lindholm M, Timonen M, Eronen M (2004) Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods. Theor Appl Climatol 79:239–254. doi:10.1007/s00704-004-0077-0

    Article  Google Scholar 

  • Henry DA, Guardiola-Claramonte M, Barron-Gafford GA et al. (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global change-type drought. Proceedings of the national academy of sciences, 2009. doi:10.1073/pnas.0901438106

  • Hietala AM, Nagy NE, Steffenrem A et al (2009) Spatial patterns in hyphal growth and substrate exploitation within Norway spruce stems colonized by the pathogenic white-rot fungus Heterobasidion parviporum RID C-5536-2008. Appl Environ Microbiol 75:4069–4078. doi:10.1128/AEM.02392-08

    Article  PubMed  CAS  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78

    Google Scholar 

  • Joseph G, Kelsey R, Thies W (1998) Hydraulic conductivity in roots of ponderosa pine infected with black-stain (Leptographium wageneri) or annosus (Heterobasidion annosum) root disease. Tree Physiol 18:333–339

    Article  PubMed  Google Scholar 

  • Kimberley MO, Hood IA, Gardner JF (2002) Armillaria root disease of Pinus radiata in New Zealand. 6: growth loss. N Z J For Sci 32:148–162

    Google Scholar 

  • Korhonen K (1978) Intersterility groups of Heterobasidion annosum. Commun Inst For Fenniae 94:1–25

    Google Scholar 

  • Korhonen K, Stenlid J (1998) Biology of Heterobasidion annosum. In: Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds) Heterobasidion annosum: biology, ecology, impact and control. CAB International, Wallingford, pp 43–70

    Google Scholar 

  • Kozlowski TT (1969) Tree physiology and forest pests. J For 67:118–123

    Google Scholar 

  • Kozlowski TT, Kramer PJ, Pallardy SG (1991) The physiological ecology of woody plants. Academic Press, London

    Google Scholar 

  • La Porta N, Capretti P, Kammiovirta K et al (1997) Geographical cline of DNA variation within the F intersterility group of Heterobasidion annosum in Italy. Plant Pathol 46:773–784. doi:10.1046/j.1365-3059.1997.d01-65.x

    Article  Google Scholar 

  • La Porta N, Apostolov K, Korhonen K (1998) Intersterility groups of Heterobasidion annosum and their host specificity in Bulgaria. Eur J For Pathol 28:2–9

    Article  Google Scholar 

  • La Porta N, Capretti P, Thomsen IM, Kasanen R, Hietala AM, Von Weissenberg K (2008) Forest pathogens with higher damage potential due to climate change in Europe. Can J Plant Pathol 30:177–195

    Article  Google Scholar 

  • LeBlanc DC (1990) Relationships between breast-height and whole-stem growth indices for red spruce on Whiteface Mountain, New York. Can J For Res 20:1399–1407. doi:10.1139/x90-185

    Article  Google Scholar 

  • Levanic T, Gricar J, Gagen M et al (2009) The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees-Struct Funct 23:169–180. doi:10.1007/s00468-008-0265-0

    Article  Google Scholar 

  • Lewis K (1997) Growth reduction in spruce infected by Inonotus tomentosus in central British Columbia. Can J For Res 27:1669–1674. doi:10.1139/cjfr-27-10-1669

    Article  Google Scholar 

  • Linares CJ, Camarero JJ, Bowker MA et al (2010) Stand-structural effects on Heterobasidion abietinum-related mortality following drought events in Abies pinsapo. Oecologia 164:1107–1119. doi:10.1007/s00442-010-1770-6

    Article  PubMed  Google Scholar 

  • Lonsdale D, Gibbs JN (1996) Effects of climate change on fungal diseases of trees. In: Frankland JC, Magan N, Gadd GM (eds) Fungi and environmental change. Cambridge University Press, Cambridge

    Google Scholar 

  • Maloy OC (1974) Benomyl-malt agar for the purification of cultures of wood decay fungi. Plant Dis Rep 58:902–904

    CAS  Google Scholar 

  • Manion PD (1991) Tree disease concepts, 2nd edn. Prentice Hall, Inc., Englewood

    Google Scholar 

  • Niemelä T, Korhonen K (1998) Taxonomy of the genus Heterobasidion. In: Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds) Heterobasidion annosum: biology, ecology, impact and control. CAB International, Wallingford, pp 27–33

    Google Scholar 

  • Oliva J, Samils N, Johansso U, Bendz-Hellgren M, Stenlid J (2008) Urea treatment reduced Heterobasidion annosum s.l. root rot in Picea abies after 15 years. For Ecol Manag 255:2876–2882

    Article  Google Scholar 

  • Oliva J, Thor M, Stenlid J (2010) Reaction zone and periodic increment decrease in Picea abies trees infected by Heterobasidion annosum s.l. For Ecol Manag 260:692–698. doi:10.1016/j.foreco.2010.05.024

    Article  Google Scholar 

  • Palmer WC (1965) Meteorological drought. Research paper, 45. US Weather Bureau, Washington

  • Pedersen B, McCune B (2002) A non-invasive method for reconstructing the relative mortality rates of trees in mixed-age, mixed-species forests. For Ecol Manag 155:303–314. doi:10.1016/S0378-1127(01)00567-9

    Article  Google Scholar 

  • Puddu A, Luisi N, Capretti P, Santini A (2003) Environmental factors related to damage by Heterobasidion abietinum in Abies alba forests in Southern Italy. For Ecol Manag 180:37–44. doi:10.1016/S0378-1127(02)00607-2

    Article  Google Scholar 

  • Puhe J (2003) Growth and development of the root system of Norway spruce (Picea abies) in forest stands: a review. For Ecol Manag 175:253–273. doi:10.1016/S0378-1127(02)00134-2

    Article  Google Scholar 

  • Sànchez ME, Capretti P, Calzado C et al. (2005) Root rot disease on Abies pinsapo in southern Spain. In: Manka M, Lakomy P (eds) Proceedings of the 11th international conference on root and butt rots, 16–22 August 2004, IUFRO. The August Ciezuowski, Agricultural University, Poznan, pp 220–223

  • Scherm H, Chakraborty S (1999) Climate change and plant disease. Annu Rev Phytopathol 37:399–426

    Article  PubMed  Google Scholar 

  • Schmitt C, Parmeter J, Kliejunas J (2000) Annosus root rot disease of western conifers. For Pest Leafl US Department of Agriculture, Forest Service

  • Schweingruber FH (1996) Tree rings and environment: dendroecology. Paul Haupt Verlag, Berne

    Google Scholar 

  • Schweingruber FH, Eckstein D, Serre-Bachet F, Braker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:9–38

    Google Scholar 

  • Shain L (1979) Dynamic responses of differentiated sapwood to injury and infection. Phytopathology 69:1143–1147

    Article  Google Scholar 

  • Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. Iowa State University

  • Stalpers JA (1978) Identification of wood-inhabiting Anphyllophorales in pure culture. Studies in mycology no. 16. Centraal bureau voor Schimmelcultures, Baarn

  • Stenlid J, Johansson M (1987) Infection of roots of Norway spruce (Picea abies) by Heterobasidion annosum.2. early changes in phenolic content and toxicity. Eur J For Pathol 17:217–226

    Article  CAS  Google Scholar 

  • Tsanova P (1974) The distribution of Fomes annosus and factors affecting its development in some natural Spruce forests. Gorskostopanska Nauka 11:59–70

    Google Scholar 

  • van der Maaten-Theunissen M, Bouriaud O (2012) Climate–growth relationships at different stem heights in silver fir and Norway spruce. Can J For Res 42:958–969. doi:10.1139/x2012-046

    Article  Google Scholar 

  • van der Schrier G, Efthymiadis D, Briffa KR, Jones PD (2007a) European Alpine moisture variability for 1800–2003. Int J Biometeorol 27:415–427. doi:10.1002/joc.1411

    Google Scholar 

  • van der Schrier G, Efthymiadis D, Briffa KR et al (2007b) European Alpine moisture variability for 1800–2003. Int J Biometeorol 27:415–427. doi:10.1002/joc.1411

    Google Scholar 

  • Venables R, Hornik K, Albrecht G (2010) Main package of Venables and Ripley’s MASS, Ver. 7.3.7. Repository CRAN, Licence GPL

  • Waldboth M, Oberhuber W (2009) Synergistic effect of drought and chestnut blight (Cryphonectria parasitica) on growth decline of European chestnut (Castanea sativa). For Pathol 39:43–55. doi:10.1111/j.1439-0329.2008.00562.x

    Article  Google Scholar 

  • Walter H, Lieth H (1967) Klimadiagramm-Weltatlas. 3 Bande. Fischer, Jena

  • Weber H, Moravec J, Theurillat JP (2000) International code of phytosociological nomenclature. 3rd edn. J Veg Sci 11:739–768

  • Woodward S, Stenlid J, Karjalainen R et al (1998) Heterobasidion annosum: biology, ecology, impact and control. Cab International, Wallingford

    Google Scholar 

Download references

Acknowledgments

This study was supported and co-funded by the ‘Fondazione CARITRO—Cassa di Risparmio di Trento e Rovereto’ with the project ISOCHANGE. The authors wish to thank Magdalena Nötzli and Anne Verstege (WSL, Birmensdorf, Switzerland) for valuable laboratory assistance, Luca Ziller (FEM-IASMA, S. Michele a/Adige, Italy), Vivienne Frankell for correcting the English text and the ‘Magnifica Comunità di Fiemme’ for allowing us to sample the trees. The authors wish to thank two anonymous reviewers for their insightful and helpful comments on a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Gori.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gori, Y., Cherubini, P., Camin, F. et al. Fungal root pathogen (Heterobasidion parviporum) increases drought stress in Norway spruce stand at low elevation in the Alps. Eur J Forest Res 132, 607–619 (2013). https://doi.org/10.1007/s10342-013-0698-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-013-0698-x

Keywords

Navigation