Skip to main content

Advertisement

Log in

Change detection using bi-temporal aerial photographs and registration at the stand level

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

There is a trend to continuously update forest data in forest management planning systems. Thus, changes in forest stands caused by, e.g. operations and storm damages should be detected in order to ensure the accuracy of forest data and beneficial decisions related to the treatments of the stands. This justifies the application of aerial photographs in change detection as being reasonable because they are already used in forest management planning. This study presents a semi-automatic method based on bi-temporal aerial photographs and registration at the stand and segment levels for the detection of changes in boreal forests. Linear stepwise discriminant analysis and the non-linear k-nearest neighbour (k-NN) method were tested and statistically compared in classification. The classification results at the stand level were found to be better than at the segment level. Compared to previous studies, the results of this study demonstrate remarkable improvement in the classification accuracy of moderate changes. The results showed that change detection substantially improved when the registration at the stand level was used, especially in the detection of thinned stands. To some extent, the method can be already applied operationally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ajosenpää T, Haapasalo E, Paananen R, Sell R, Uuttera J, Valanne K, Ärölä E (2006) Solmu–maastotyöopas. 2006, 5th edn. Forestry Development Centre Tapio, Helsinki (In Finnish)

    Google Scholar 

  • Alberga V (2009) Similarity measures of remotely sensed multi-sensor images for change detection applications. Remote Sens 1:122–143

    Article  Google Scholar 

  • Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. J Am Stat Assoc 46:175–185

    Google Scholar 

  • Anttila P (2002) Nonparametric estimation of stand volume using spectral and spatial features of aerial photographs and old inventory data. Canadian J For Res 32:1849–1857

    Article  Google Scholar 

  • Campbell JB (1987) Introduction to Remote Sens. The Guilford Press, New York

    Google Scholar 

  • Cohen WB, Fiorella M, Gray J, Helmer E, Anderson K (1998) An efficient and accurate method for mapping forest clearcuts in the Pacific Northwest using Landsat imagery. Photogramm Eng Remote Sens 64(4):293–300

    Google Scholar 

  • Congalton RG, Green K (2009) Assessing the accuracy of remotely sensed data. Principles and practices. CRC Press. Taylor & Francis Group, New York

    Google Scholar 

  • Congalton RG, Mead RA (1983) A quantitative method to test for consistency and correctness in photo-interpretation. Photogramm Eng Remote Sens 49(1):69–74

    Google Scholar 

  • Congalton RG, Oderwald RG, Mead RA (1983) Assessing Landsat classification accuracy using discrete multivariate statistical techniques. Photogramm Eng Remote Sens 49(12):1671–1678

    Google Scholar 

  • Davis LS, Johnson KN (1987) Forest management, 3rd edn. McGraw- Hill Series in Forest Resources, USA

    Google Scholar 

  • Desclée B, Bogaert P, Defourny P (2006) Forest change detection by statistical object-based method. Remote Sens Environ 102(1–2):1–11

    Article  Google Scholar 

  • Fensham RJ, Fairfax RJ (2002) Aerial photography for assessing vegetation change: a review of applications and the relevance of findings for Australian vegetation history. Aust J Bot 50:415–429

    Article  Google Scholar 

  • Haapanen R, Pekkarinen A (2000) Utilising satellite imagery and digital detection of clear cuttings for timber supply management. In: International Archives of Photogrammetry and Remote Sens vol XXXIII, Part B7, 481–488

  • Haapanen R, Tuominen S (2008) Data combination and feature selection for multi-source forest inventory. Photogramm Eng Remote Sens 74(7):869–880

    Google Scholar 

  • Haara A (2002) Kasvuennusteiden luotettavuuden selvittäminen knn-menetelmällä ja monitavoiteoptimoinnilla. Metsätieteen aikakauskirja 2002(3):391–406 (In Finnish)

    Google Scholar 

  • Häme T (1991) Spectral interpretation of changes in forest using satellite scanner images, Ph.D. dissertation, University of Helsinki

  • Härdle W (1989) Applied nonparametric regression. Cambridge University Press, Cambridge, p 323

    Google Scholar 

  • Heikkonen J, Varjo J (2004) Forest change detection applying Landsat thematic mapper difference features: a comparison of different classifiers in boreal forest conditions. For Sci 50(5):579–588

    Google Scholar 

  • Holmgren J (2004) Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning. Scand J For Res 19:543–553

    Article  Google Scholar 

  • Holmgren P, Thuresson T (1998) Satellite Remote Sens for forestry planning—a review. Scand J For Res 13(1):90–110

    Article  Google Scholar 

  • Holopainen M, Wang G (1998) The calibration of digitized aerial photographs for forest stratification. Int J Remote Sens 19(4):677–696

    Article  Google Scholar 

  • Holopainen M, Haapanen R, Tuominen S, Viitala R (2008) Performance of airborne laser scanning- and aerial photograph-based statistical and textural features in forest variable estimation. Proceedings of SilviLaser 2008: 8th International conference on LiDAR applications in forest assessment and inventory, September 17–19, 2008, Heriot-Watt University, Edinburgh, UK, pp 105–112

  • Hooke R, Jeeves TA (1961) ‘Direct search’ solution of numerical and statistical problems. J ACM 8:212–229

    Article  Google Scholar 

  • Hudak AT, Wessman CA (1998) Textural Analysis of Historical Aerial Photography to Characterize Woody Plant Encroachment in South African Savanna. Remote Sens Environ 66(3):317–330

    Article  Google Scholar 

  • Hyppänen H (1999) Eriaikaiset ilmakuvat metsäkuvioiden muutosten tunnistamisessa. Metsätieteen aikakauskirja 1999(2):155–166 (In Finnish)

    Google Scholar 

  • Hyvönen P, Anttila P (2006) Change detection in boreal forests using bi-temporal aerial photographs. Silva Fennica 40(2):303–314

    Google Scholar 

  • Hyvönen P, Pekkarinen A, Tuominen S (2005) Segment-level stand inventory for forest management. Scand J For Res 20:75–84

    Article  Google Scholar 

  • Im J, Jensen JR (2005) A change detection model based on neighbourhood correlation image analysis and decision tree classification. Remote Sens Environ 99(3):326–340

    Article  Google Scholar 

  • Im J, Jensen JR, Tullis JA (2006) Object-based change detection using correlation image analysis and image segmentation. Int J Remote Sens 29(2):399–423

    Article  Google Scholar 

  • Jain R, Kasturi R, Schunk B (1995) Machine Vision. McGraw-Hill, New York

    Google Scholar 

  • Kadmon R, Harari-Kremer R (1999) Studying long-term vegetation dynamics using digital processing of historical aerial photographs. Remote Sens Environ 68(2):164–176

    Article  Google Scholar 

  • Keller J, Gray M, Givens JJ (1985) A fuzzy k-nearest neighbor algorithm. IEEE transaction on systems. Man Cybern 15(4):580–585

    Google Scholar 

  • Koivuniemi J, Korhonen KT (2006) Inventory by compartments. In: Kangas A, Maltamo M (eds) Forest inventory—methodology and applications. Springer, Netherlands, pp 271–278

    Chapter  Google Scholar 

  • Korhonen KT (2002) Metsäsuunnittelun tietohuollon käytäntö ja tutkimus. Metsätieteen aikakauskirja 2002(3):509–514 (In Finnish)

    Google Scholar 

  • Lamonaca A, Corona P, Barbati A (2008) Exploring forest structural complexity by multi-scale segmentation of VHR imagery. Remote Sens Environ 112(6):2849–2893

    Article  Google Scholar 

  • Li P, Cheng T, Moser G, Serpico SB, Ma D (2007) Multitemporal change detection by spectral and multivariate texture information. IEEE International geoscience and remote sensing symposium 2007. IGARSS Barcelona, Spain, 23–28 July 2007, pp 1922–1925

  • Lillesand TM, Kiefer RW, Chipman JW (2004) Remote sensing and image interpretation. Wiley, New York

    Google Scholar 

  • Lippit CD, Rogan J, Eastman RJ, Jones TG (2008) Mapping selective logging in mixed deciduous forest: a comparison of machine learning algorithms. Photogramm Eng Remote Sens 74(10):1201–1211

    Google Scholar 

  • Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870

    Article  Google Scholar 

  • Lu D, Mausel P, Brondizio E, Moran E (2004) Change detection techniques. Int J Remote Sens 25:2365–2407

    Article  Google Scholar 

  • Magnusson M, Fransson J, Olsson H (2008) Change detection of thinned Norway spruce stands using optical SPOT-4 satellite data. Can J For Res 34(5):431–437

    Google Scholar 

  • Mäkelä H, Pekkarinen A (2001) Estimation of timber volume at the sample plot level by means of image segmentation and Landsat TM imagery. Remote Sens Environ 77(1):66–75

    Article  Google Scholar 

  • Maltamo M, Mustonen K, Hyyppä J, Pitkänen J, Yu X (2004) The accuracy of estimating individual tree variables with airborne laser scanning in a boreal nature reserve. Can J For Res 34:1791–1801

    Article  Google Scholar 

  • Muinonen E, Tokola T (1990) An application of remote sensing for communal forest inventory: The usability of remote sensing for forest inventory and planning. Proceedings from SNS/IUFRO workshop Umeå 26–28 February 1990, Swedish University of Agricultural Sciences, Remote sensing laboratory, Report 4: 35–42

  • Næsset E (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ 61(2):246–253

    Article  Google Scholar 

  • Næsset E, Gobakken T, Holmgren J, Hyyppä H, Hyyppä J, Maltamo M, Nilsson M, Olsson H, Persson Å, Söderman U (2004) Laser scanning of forest resources: the Nordic experience. Scand J For Res 19:482–499

    Article  Google Scholar 

  • Narendra P, Goldberg M (1980) Image segmentation with directed trees. PAMI 2:185–191

    Article  Google Scholar 

  • Nelson R, Krabill W, Tonelli J (1988) Estimating forest biomass and volume using airborne laser data. Remote Sens Environ 24(2):247–267

    Article  Google Scholar 

  • Nilson T, Peterson U, Päivinen R (1992) Deviations from normal successional reflectance trajectories in damaged Scots pine stands. Proceedings of the IUFRO Centennial Meeting Berlin 31 August–4 September 1992, Japan Society of Forest Planning Press, Tokyo University of Agriculture and Technology, 151–160

  • Olsson H (1994) Changes in satellite measured reflectances caused by thinning cuttings in boreal forest. Remote Sens Environ 50(3):221–230

    Article  Google Scholar 

  • Pekkarinen A (2002) Image segment-based spectral features in the estimation of timber volume. Remote Sens Environ 82(2–3):349–359

    Article  Google Scholar 

  • Pekkarinen A, Sarvi V (2002) Detection of clearcuttings with help of high-altitude panchromatic aerial photographs and image segmentation. Proceedings of the ForestSAT symposium, 5–9 August, Edinburgh, Scotland, unpaginated CD-ROM

  • Pellikka P, King DJ, Leblanc SG (2000) Quantification and reduction of bidirectional effects in aerial CIR imagery of deciduous forest using two reference land surface types. Remote Sens Rev 19(1–4):259–291

    Google Scholar 

  • Poso S (1983) Kuvioittaisen arvioimismenetelmän perusteita. (Basic features of forest inventory by compartments). Silva Fennica 17(4):313–349 (In Finnish with English summary)

    Google Scholar 

  • Rogan J, Franklin J, Stow D, Miller J, Woodcock C, Roberts D (2008) Mapping land-cover modifications over large areas: a comparison of machine learning algorithms. Remote Sens Environ 112(5):2272–2283

    Article  Google Scholar 

  • Saksa T, Uuttera J, Kolström T, Lehikoinen M, Pekkarinen A, Sarvi V (2003) Clear-cut detection in boreal forest aided by remote sensing. Scand J For Res 18(6):537–546

    Article  Google Scholar 

  • Shugart HH, Bourgeau-Chavez L, Kasischke ES (2000) Determination of stand properties in boreal and temperate forests using high-resolution imagery. For Sci 46(4):478–486

    Google Scholar 

  • Singh A (1989) Digital change detection techniques using remotely-sensed data. Int J Remote Sens 10(6):989–1003

    Article  Google Scholar 

  • SPSS Inc. (2005) SPSS 12.0.1 command syntax reference. SPSS Inc., Chicago

    Google Scholar 

  • Story M, Congalton RG (1986) Accuracy assessment: a user’s perspective. Photogramm Eng Remote Sens Vol 52(3):397–399

    Google Scholar 

  • Tabachnick B, Fidell L (1989) Using multivariate statistics, 2nd edn. HarperCollins Publisher, Inc., New York

    Google Scholar 

  • Tomppo E (1990) Satellite image based national forest inventory of Finland. Photogramm J Finland 12(1):115–120

    Google Scholar 

  • Tuominen S, Pekkarinen A (2005) Performance of different spectral and textural aerial photograph features in multi-source forest inventory. Remote Sens Environ 94(2):256–268

    Article  Google Scholar 

  • Varjo J (1996) Controlling continuously updated forest data by satellite remote sensing. Int J Remote Sensing 17(1):43–67

    Article  Google Scholar 

  • Wilson E, Sader S (2002) Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens Environ 80(3):385–396

    Article  Google Scholar 

  • Wulder M, LeDrew E, Franklin S, Lavigne M (1998) Aerial image texture information in the estimation of northern deciduous and mixed wood forest leaf area index (LAI). Remote Sens Environ 64(1):64–76

    Article  Google Scholar 

  • Yu X, Hyyppä H, Kaartinen H, Maltamo M (2004) Automatic detection of harvested trees and determination of forest growth using airborne laser scanning. Remote Sens Environ 90(4):451–462

    Article  Google Scholar 

  • Yu X, Hyyppä J, Kukko A, Maltamo M, Kaartinen H (2006) Change detection techniques for canopy height growth measurements using airborne laser scanning data. Photogramm Eng Remote Sensing 72(12):1339–1348

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pekka Hyvönen.

Additional information

Communicated by H. Pretzsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyvönen, P., Heinonen, J. & Haara, A. Change detection using bi-temporal aerial photographs and registration at the stand level. Eur J Forest Res 130, 637–647 (2011). https://doi.org/10.1007/s10342-010-0455-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-010-0455-3

Keywords

Navigation