Skip to main content
Log in

Biochemical mechanisms of acaricidal activity of 2,4-di-tert-butylphenol and ethyl oleate against the carmine spider mite Tetranychus cinnabarinus

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Tetranychus cinnabarinus (Boisduval) is one of the most economically important and highly polyphagous herbivorous pests in fields and greenhouses worldwide. We previously reported that 2,4-di-tert-butylphenol (DTBP) and ethyl oleate (EO) showed significantly acaricidal, repellent and oviposition deterrent properties against T. cinnabarinus via an unknown mechanism. In this study, the acaricidal activities of DTBP and EO and their biochemical mechanisms in controlling T. cinnabarinus were investigated at different time points by assessing the associated changes in toxic symptoms, potential target-related enzyme activities and seven neurotransmitters belonging to the biogenic amines (BAs). The results showed that the median lethal times (LT50) for DTBP and EO were 8 and 15 h after treatment, respectively. Using dynamic symptomatology observations, typical neurotoxic symptoms including excitation, convulsion and paralysis were observed in the mites treated with DTBP and EO. Furthermore, the two compounds exerted significant inhibitory activity on monoamine oxidase (MAO) in adult T. cinnabarinus females in vitro and in vivo and had little effect on acetylcholinesterase (AChE) activity. The content levels of the seven BAs analyzed by UPLC-3QMS were higher in the mites treated with DTBP and EO than in the controls, except for phenethylamine (PEA) (for DTBP and EO) and octopamine (OA) (for EO). These results demonstrate that both DTBP and EO exert effects on T. cinnabarinus that are possibly consequences of their preventive effects on the deamination of BAs in the nervous system, most likely through inhibitory effects on MAO or MAO-like enzymes and/or interactions with certain special biogenic amine G protein-coupled receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamo SA, Linn CE, Hoy RR (1995) The role of neurohormonal octopamine during “fight or flight” behavior in the field cricket Gryllus bimaculatus. J Exp Biol 198:1691–1700

    CAS  PubMed  Google Scholar 

  • Aker WG, Hu X, Wang P, Hwang HM (2008) Comparing the relative toxicity of malathion and malaoxon in blue catfish Ictalurus furcatus. Environ Toxicol 23:548–554

    Article  CAS  PubMed  Google Scholar 

  • Anderson JA, Coats JR (2012) Acetylcholinesterase inhibition by nootkatone and carvacrol in arthropods. Pestic Biochem Physiol 102:124–128

    Article  CAS  Google Scholar 

  • Attia S, Grissa KL, Lognay G, Bitume E, Hance T, Mailleux AC (2013) A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides. J Pest Sci 86:361–386

    Article  Google Scholar 

  • Auger P, Migeon A, Ueckermann EA, Tiedt L, Navajas M (2013) Evidence for synonymy between Tetranychus urticae and Tetranychus cinnabarinus (Acari, prostigmata, tetranychidae): review and new data. Acarologia 53:383–415

    Article  Google Scholar 

  • Ay R, Yorulmaz S (2010) Inheritance and detoxification enzyme levels in Tetranychus urticae Koch (Acari: Tetranychidae) strain selected with chlorpyrifos. J Pest Sci 83:85–93

    Article  Google Scholar 

  • Aziz SA, Knowles CO (1973) Inhibition of monoamine oxidase by the pesticide chlordimeform and related compounds. Nature 242:417–418

    Article  CAS  PubMed  Google Scholar 

  • Beeman RW, Matsumura F (1973) Chlordimeform: a pesticide acting upon amine regulatory mechanisms. Nature 242:273–274

    Article  CAS  PubMed  Google Scholar 

  • Blenau W, Baumann A (2001) Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera. Arch Insect Biochem Physiol 48:13–38

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bu CY, Peng B, Cao Y, Wang XQ, Chen Q, Li JL, Shi GL (2015) Novel and selective acetylcholinesterase inhibitors for Tetranychus cinnabarinus (Acari: Tetranychidae). Insect Biochem Mol Biol 66:129–135

    Article  CAS  PubMed  Google Scholar 

  • Casida JE, Durkin KA (2013) Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol 58:99–117

    Article  CAS  PubMed  Google Scholar 

  • Chen YJ, Dai GH (2015a) Acaricidal activity of compounds from Cinnamomum camphora (L.) Presl against the carmine spider mite, Tetranychus cinnabarinus. Pest Manag Sci 71:1561–1571

    Article  CAS  PubMed  Google Scholar 

  • Chen YJ, Dai GH (2015b) Acaricidal, repellent, and oviposition-deterrent activities of 2,4-di-tert- butylphenol and ethyl oleate against the carmine spider mite Tetranychus cinnabarinus. J Pest Sci 88:645–655

    Article  Google Scholar 

  • Chuah TS, Norhafizah MZ, Ismail S (2014) Phytotoxic effects of the extracts and compounds isolated from napiergrass (Pennisetum purpureum) on chinese sprangletop (Leptochloa chinensis) germination and seedling growth in aerobic rice systems. Weed Sci 62:457–467

    Article  CAS  Google Scholar 

  • Copping LG, Duke SO (2007) Natural products that have been used commercially as crop protection agents. Pest Manag Sci 63:524–554

    Article  CAS  PubMed  Google Scholar 

  • Dekeyser MA (2005) Acaricide mode of action. Pest Manag Sci 61:103–110

    Article  CAS  PubMed  Google Scholar 

  • Del Pino J, Martínez MA, Castellano V, Ramos E, Martínez-Larrañaga MR, Anadón A (2013) Effects of exposure to amitraz on noradrenaline, serotonin and dopamine levels in brain regions of 30 and 60 days old male rats. Toxicology 308:88–95

    Article  PubMed  Google Scholar 

  • Dharni S, Sanchita, Maurya A, Samad A, Srivastava SK, Sharma A, Patra DD (2014) Purification, characterization, and in vitro activity of 2,4-di-tert-butylphenol from Pseudomonas monteilii PsF84: conformational and molecular docking studies. J Agric Food Chem 62:6138–6146

    Article  CAS  PubMed  Google Scholar 

  • Edwards DH, Kravitz EA (1997) Serotonin, social status and aggression. Curr Opin Neurobiol 7:812–819

    Article  CAS  PubMed  Google Scholar 

  • El-Kholy S, Stephano F, Li Y, Bhandari A, Fink C, Roeder T (2015) Expression analysis of octopamine and tyramine receptors in Drosophila. Cell Tissue Res 361:669–684

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL, Coutny KD, Andres U, Featherstone KM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Erber J, Kloppenburg P (1995) The modulatory effects of serotonin and octopamine in the visual system of the honey bee (Apis mellifera L.). I. Behavioral analysis of the motion-sensitive antennal reflex. J Comp Physiol 176:111–118

    Article  CAS  Google Scholar 

  • Flório JC, Sakate M, Palemo-Neto J (1993) Effects of amitraz on motor function. Pharmacol Toxicol 73:109–114

    Article  PubMed  Google Scholar 

  • Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V, Osborne EJ et al (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Gruntenko NE, Chentsova NA, Bogomolova EV, Karpova EK, Glazko GV, Faddeeva NV et al (2004) The effect of mutations altering biogenic amine metabolism in Drosophila on viability and the response to environmental stresses. Arch Insect Biochem Physiol 55:55–67

    Article  CAS  PubMed  Google Scholar 

  • Hiragaki S, Suzuki T, Mohamed AA, Takeda M (2015) Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT); a key enzyme for physiological and behavioral switch in arthropods. Front Physiol 6:1–16

    Article  Google Scholar 

  • Holden JS, Hadfield JR (1975) Chlordimeform and its effects on monoamine oxidase activity in the cattle tick, Boophilus microplus. Experentia 31:1015–1017

    Article  CAS  Google Scholar 

  • Hu ZQ, Chen ZZ, Yin ZQ, Jia RY, Song X, Li L, Zou YF, Liang XX, Li LX, He CL, Yin LZ, Lv C et al (2015) In vitro acaricidal activity of 1,8-cineole against Sarcoptes scabiei var. cuniculi and regulating effects on enzyme activity. Parasitol Res 114:2959–2967

    Article  PubMed  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agricultural and an increasingly regulated world. Annu Rev Entomol 51:45–56

    Article  CAS  PubMed  Google Scholar 

  • Kaufman R, Sloley D (1996) Catabolism of dopamine and 5-hydroxytryptamine by monoamine oxidase in the ixodid tick, Amblyomma hebraeum. Insect Biochem Mol Biol 26:101–109

    Article  CAS  PubMed  Google Scholar 

  • Khajehali J, Van Leeuwen T, Grispou M, Morou E, Alout H, Weill M, Tirry L, Vontasc J, Tsagkarakou A (2010) Acetylcholinesterase point mutations in European strains of Tetranychus urticae (Acari: Tetranychidae) resistant to organophosphates. Pest Manag Sci 66:220–228

    CAS  PubMed  Google Scholar 

  • Khater HF, Seddiek SA, El-Shorbagy MM, Ali AM (2013) The acaricidal efficacy of peracetic acid and deltamethrin against the fowl tick, Argas persicus, infesting laying hens. Parasitol Res 112:3669–3678

    Article  PubMed  Google Scholar 

  • Kielkiewicz M (1996) Dispersal of Tetranychus cinnabarinus on various tomato cultivars. Entomol Exp Appl 80:254–257

    Article  Google Scholar 

  • Kutsukake M, Komatsu A, Yamamoto D, Ishiwa-Chigusa S (2000) A tyramine receptor gene mutation causes a defective olfactory behavior in Drosophila melanogaster. Gene 245:31–42

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Yoo M, Shin D (2015) The identification and quantification of biogenic amines in Korean turbid rice wine, Makgeolli by HPLC with mass spectrometry detection. LWT Food Sci Technol 62:350–356

    Article  CAS  Google Scholar 

  • Lei J, Leser M, Enan E (2010) Nematicidal activity of two monoterpenoids and SER-2 tyramine receptor of Caenorhabditis elegans. Biochem Pharmacol 79:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Leoncini I, Le Conte Y, Costagliola G, Plettner E, Toth AL, Wang MW et al (2004) Regulation of behavioral maturation by a primer pheromone produced by adult worker honey bees. P Natl Acad Sci USA 101:17559–17564

    Article  CAS  Google Scholar 

  • Libersat F, Pfluger HJ (2004) Monoamines and the orchestration of behavior. Bioscience 54:17–25

    Article  Google Scholar 

  • López MD, Pascual-Villalobos MJ (2010) Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind Crop Prod 31:284–288

    Article  Google Scholar 

  • Maccioni E, Alcaro S, Orallo F, Cardia MC, Distinto S, Costa G, Yanez M et al (2010) Synthesis of new 3-aryl-4,5-dihydropyrazole-1-carbothioamide derivatives. An investigation on their ability to inhibit monoamine oxidase. Eur J Med Chem 45:4490–4498

    Article  CAS  PubMed  Google Scholar 

  • Malamud JG, Miszin AP, Josephson RK (1988) The effects of octopamine on contraction kinetics and power output of the locust flight muscle. J Comp Physiol 162:827–835

    Article  CAS  Google Scholar 

  • Marcic D (2012) Acaricides in modern management of plant-feeding mites. J Pest Sci 85:395–408

    Article  Google Scholar 

  • Mi AY, Tae SJ, Doo SP, Ming ZX, Hyun WO, Kyoung BS et al (2006) Antioxidant effects of quinoline alkaloids and 2,4-di-tert-butylphenol isolated from Scolopendra subspinipes. Biol Pharm Bull 29:735–739

    Article  Google Scholar 

  • Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) Acetylcholinesterase inhibitors from plants. Phytomedicine 14:289–300

    Article  CAS  PubMed  Google Scholar 

  • Pophof B (2002) Octopamine enhances moth olfactory responses to pheromones, but not those to general odorants. J Comp Physiol A 188:659–662

    Article  CAS  Google Scholar 

  • Roeder T (2002) Biochemistry and molecular biology of receptors for biogenic amines in locusts. Microsc Res Tech 56:237–247

    Article  CAS  PubMed  Google Scholar 

  • Roeder T (2005) Tyramine and octopamine: ruling behavior and metabolism. Annu Rev Entomol 50:447–477

    Article  CAS  PubMed  Google Scholar 

  • Saidemberg DM, Ferreira MAB, Takahashi TN, Gomes PC, Cesar-Tognoli LMM et al (2009) Monoamine oxidase inhibitory activities of indolylalkaloid toxins from the venom of the colonial spider Parawixia bistriata: functional characterization of PwTX-I. Toxicon 54:717–724

    Article  CAS  PubMed  Google Scholar 

  • Salgado VL (1998) Studies on the mode of action of spinosad: insect symptoms and physiological correlates. Pestic Biochem Physiol 60:91–102

    Article  CAS  Google Scholar 

  • Sang MK, Kim JD, Kim BS, Kim KD (2011) Root treatment with rhizobacteria antagonistic to phytophthora blight affects anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field. Phytopathology 101:666–678

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute (2002) SAS OnlineDoc®, Version 9.2. Statistical Analysis System Institute. Cary, North Carolina, USA

  • Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 22:197–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stumpf N, Zebitz CPW, Kraus W, Moores GD, Nauen R (2001) Resistance to organophosphates and biochemical genotyping of acetylcholinesterases in Tetranychus urticae (Acari: Tetranychidae). Pestic Biochem Physiol 69:131–142

    Article  CAS  Google Scholar 

  • Thamm M, Rolke D, Jordan N, Balfanz S, Schiffer C, Baumann A, Blenau W (2013) Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera). PLoS ONE 8:e82407

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas JC, Adams DG, Nessler CL, Brown JK, Bohnert HJ (1995) Tryptophan decarboxylase, tryptamine, and reproduction of the whitefly. Plant Physiol 109:717–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas JC, Saleh EF, Alammar N, Akroush AM (1998) The indole alkaloid tryptamine impairs reproduction in Drosophila melanogaster. J Econ Entomol 91:841–846

    Article  CAS  PubMed  Google Scholar 

  • Tong F, Coats JR (2012) Quantitative structure-activity relationships of monoterpenoid binding activities to the housefly GABA receptor. Pest Manag Sci 68:1122–1129

    Article  CAS  PubMed  Google Scholar 

  • Tongpoothorn W, Chanthai S, Sriuttha M, Saosang K, Ruangviriyachai C (2012) Bioactive properties and chemical constituents of methanolic extract and its fractions from Jatropha curcas oil. Ind Crops Prod 36:437–444

    Article  CAS  Google Scholar 

  • Tuberoso CIG, Congiu F, Serreli G, Mameli S (2015) Determination of dansylated amino acids and biogenic amines in Cannonau and Vermentino wines by HPLC-FLD. Food Chem 175:29–35

    Article  CAS  PubMed  Google Scholar 

  • Van Leeuwen T, Tirry L, Yamamoto A, Nauen R, Dermauw W (2015) The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pestic Biochem Physiol 121:12–21

    Article  PubMed  Google Scholar 

  • Wang YN, Jin YS, Bu CY, Cheng J, Zhao LL, Shi GL (2010) Assessment of the contact toxicity of methyl palmitate on Tetranychus viennensis (Acari: Tetranychidae). J Econ Entomol 103:1372–1377

    Article  CAS  PubMed  Google Scholar 

  • Yu SJ (2008) The toxicology and biochemistry of insecticides. Taylor and Francis Inc., Philadelphia

    Google Scholar 

  • Zhang LH, Cai HL, Jiang P, Li HD, Cao LJ, Dang RL, Zhu WY, Deng Y (2015) Simultaneous determination of multiple neurotransmitters and their metabolites in rat brain homogenates and microdialysates by LC-MS/MS. Anal Methods 7:3929–3938

    Article  CAS  Google Scholar 

  • Žižka Z, Pelc R, Jizba J, Kandybin NV, Sergeeva MV (1997) In situ assessment at subcellular level of the effects of macrotetrolide insecticides on mites by electron microscopy and X-ray. Pestic Biochem Physiol 58:165–172

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Liu Zhicheng (Shanghai Jiao Tong University), Li Yanbo (Shanghai Research and Development Center for Pesticides) for their assistance and advice. We also thank all of the members of the Plant Health and Natural Products Laboratory of Shanghai Jiao Tong University for their advice, assistance, and technical help.

Funding

This study was funded by the Key Tracking Program in Science and Technologies, Science and Technology Commission of Shanghai Municipality (12391901600), and by the Shanghai Leading Academic Discipline Project (No. B209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by M.B. Isman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Bertrand, C., Dai, G. et al. Biochemical mechanisms of acaricidal activity of 2,4-di-tert-butylphenol and ethyl oleate against the carmine spider mite Tetranychus cinnabarinus . J Pest Sci 91, 405–419 (2018). https://doi.org/10.1007/s10340-017-0847-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-017-0847-y

Keywords

Navigation