Skip to main content
Log in

Impact of temperature and nutrition on the toxicity of the insecticide λ-cyhalothrin in full-lifecycle tests with the target mosquito species Aedes albopictus and Culex pipiens

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The global spread of the Asian tiger mosquito Aedes albopictus, an urban pest as well as a vector for arboviruses, is a threat for public health. As control measures include the use of insecticides such as the pyrethroid λ-cyhalothrin, it is crucial to assess their efficiency and their potential impact on the biodiversity especially under climate change conditions. To evaluate the environmental risk, biotests are well established for non-target organisms but not yet for mosquitoes. We therefore developed a full-lifecycle biotest for mosquitoes kept under quarantine conditions based on the OECD guideline 219. Therewith we tested the effect of temperature and nutrition on the ecotoxicological response to λ-cyhalothrin on the mosquitoes Ae. albopictus and Culex pipiens by assessing sublethal and life history parameters. The efficiency of λ-cyhalothrin decreased in both mosquito species with increasing temperature and changed with feeding protocol. At effective concentrations for potential mosquito control in surface waters, λ-cyhalothrin poses a high risk for indigenous aquatic key role species inhabiting the same microhabitats. Those aspects should to be taken into account in vector control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adhami J, Reiter P (1998) Introduction and establishment of Aedes (Stegomyia) albopictus Skuse (Diptera: Culicidae) in Albania. J Am Mosq Control Assoc 14:340–343

    CAS  PubMed  Google Scholar 

  • Alto B, Juliano S (2001a) Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory. J Med Entomol 38:548–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alto B, Juliano S (2001b) Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. J Med Entomol 38:646–656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Angelini R, Finarelli A, Angelini P et al (2007) An outbreak of chikungunya fever in the province of Ravenna Italy. Eur Commun Dis Bull 12:3260

    Google Scholar 

  • Barnthouse LW, Munns WRJ, Sorensen MT (2007) Population-level ecological risk assessment. CRC Press, Boca Raton

    Book  Google Scholar 

  • Basilua Kanza JP, El Fahime E, Alaoui S et al (2013) Pyrethroid, DDT and malathion resistance in the malaria vector Anopheles gambiae from the Democratic Republic of Congo. Trans R Soc Trop Med Hyg 107:8–14

    Article  PubMed  Google Scholar 

  • Bhatt S, Gething PW, Brady OJ et al (2013) The global distribution and burden of dengue. Nature 496:504–507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Briegel H, Timmermann SE (2001) Aedes albopictus (Diptera: Culicidae): Physiological aspects of development and reproduction. J Med Entomol 38:566–571

    Article  CAS  PubMed  Google Scholar 

  • Cairns J, Heath AG, Parker BC (1975) The effects of temperature upon the toxicity of chemicals to aquatic organisms. Hydrobiologia 47:135–171

    Article  CAS  Google Scholar 

  • Carrieri M, Bacchi M, Bellini R, Maini S (2003) On the competition occurring between Aedes albopictus and Culex pipiens (Diptera: Culicidae) in Italy. Environ Entomol 32:1313–1321

    Article  Google Scholar 

  • Chio EH, Yang E-C, Huang H-T et al (2013) Toxicity and repellence of Taiwanese indigenous djulis, Chenopodium formosaneum, against Aedes albopictus (Diptera: culicidae) and Forcipomyia taiwana (Diptera: Ceratopogonidae. J Pest Sci 86:705–712

    Article  Google Scholar 

  • Curtis CF, Myamba J, Wilkes TJ (1996) Comparison of different insecticides and fabrics for anti-mosquito bednets and curtains. Med Vet Entomol 10:1–11

    Article  CAS  PubMed  Google Scholar 

  • Cutkomp LK, Subramanyam B (1986) Toxicity of pyrethroids to Aedes aegypti larvae in relation to temperature. J Am Mosq Control Assoc 2:347–349

    CAS  PubMed  Google Scholar 

  • Delatte H, Gimonneau G, Triboire A, Fontenille D (2009) Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J Med Entomol 46:33–41

    Article  CAS  PubMed  Google Scholar 

  • Dennett JA, Bernhardt JL, Meisch MV (2003) Operational note effects of fipronil and lambda-cyhalothrin against larval Anopheles quadrimaculatus and nontarget aquatic mosquito predators in Arkansas small rice plots. J Am Mosq Control Assoc 19:172–174

    CAS  PubMed  Google Scholar 

  • European Centre for Disease Prevention and Control (2013) Environmental risk mapping: Aedes albopictus in Europe. 38

  • Gammon D, Brown M, Casida J (1981) Two classes of pyrethroid action in the cockroach. Pestic Biochem Physiol 15:181–191

    Article  CAS  Google Scholar 

  • Genchi C, Rinaldi L, Mortarino M et al (2009) Climate and Dirofilaria infection in Europe. Vet Parasitol 163:286–293

    Article  PubMed  Google Scholar 

  • GraphPad (2010) QuickCalcs: outlier calculator. http://graphpad.com/quickcalcs/Grubbs1.cfm. Accessed 16 Dec 2010

  • Grill CP, Juliano SA (1996) Predicting species interactions based on behaviour: predation and competition in container-dwelling mosquitoes. J Anim Ecol 65:63–79

    Article  Google Scholar 

  • Harbach RE (1988) The mosquitoes of the subgenus Culex in Southwest Asia and Egypt (Diptera: Culicidae). Contrib Am Entomol Inst 24:246

    Google Scholar 

  • Harwood AD, You J, Lydy MJ (2009) Temperature as a toxicity identification evaluation tool for pyrethroid insecticides: toxicokinetic confirmation. Environ Toxicol Chem 28:1051–1058

    Article  CAS  PubMed  Google Scholar 

  • Heugens EHW, Hendriks AJ, Dekker T et al (2001) A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit Rev Toxicol 31:247–284

    Article  CAS  PubMed  Google Scholar 

  • Hewitt S, Rowland M (1999) Control of zoophilic malaria vectors by applying pyrethroid insecticides to cattle. Trop Med Int Health 4:481–486

    Article  CAS  PubMed  Google Scholar 

  • Jöst H, Bialonski A, Storch V et al (2010) Isolation and phylogenetic analysis of Sindbis viruses from mosquitoes in Germany. J Clin Microbiol 48:1900–1903

    Article  PubMed Central  PubMed  Google Scholar 

  • Juliano SA (1998) Species introduction and replacement among mosquitoes: interspecific resource competition or apparent competition? Ecology 79:255–268

    Article  Google Scholar 

  • Kettle DS (1984) Medical and veterinary entomology, 2nd edn. Croom Helm Ltd, London

    Google Scholar 

  • Kulkarni RR, Pawar PV, Joseph MP et al (2013) Lavandula gibsoni and Plectranthus mollis essential oils: chemical analysis and insect control activities against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. J Pest Sci 86:713–718

    Article  Google Scholar 

  • Kumar R, Hwang J-S (2006) Larvicidal efficiency of aquatic predators: a perspective for mosquito biocontrol. Zool Stud 45:447–466

    Google Scholar 

  • La Ruche G, Souarès Y, Armengaud A et al (2010) First two autochthonous dengue virus infections in metropolitan France. Eurosurveillance 15:19676

    PubMed  Google Scholar 

  • Lawler SP, Dritz DA, Christiansen JA, Cornel AJ (2007) Effects of lambda-cyhalothrin on mosquito larvae and predatory aquatic insects. Pest Manag Sci 63:234–240

    Article  CAS  PubMed  Google Scholar 

  • Léonard PM, Juliano SA (1995) Effect of leaf litter and density on fitness and population performance of the hole mosquito Aedes triseriatus. Ecol Entomol 20:125–136

    Article  Google Scholar 

  • Livdahl T, Willey M (1991) Prospects tor an invasion: competition between Aedes albopictus and native Aedes triseriatus. Science 253:189–191

    Article  CAS  PubMed  Google Scholar 

  • Lounibos LP, Suárez S, Menéndez Z et al (2002) Does temperature affect the outcome of larval competition between Aedes aegypti and Aedes albopictus? J Vector Ecol 21:86–95

    Google Scholar 

  • Maund SJ, Hamer MJ, Warinton JS, Kedwards TJ (1998) Aquatic ecotoxicology of the pyrethroid insecticide lambda-cyhalothrin: considerations for higher-tier aquatic risk assessment. Pestic Sci 54:408–417

    Article  CAS  Google Scholar 

  • Mayer F, Ellersieck M (1986) Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals. United States Dep. Inter. U.S. Fish Wildl, Service

    Google Scholar 

  • McGuinness KA (2002) Of rowing boats, ocean liners and tests of the ANOVA homogeneity of variance assumption. Aust Ecol 27:681–688

    Article  Google Scholar 

  • Mohsen Z, Ouda N, Hashim A, Zayia H (1995) Combined larcicidal efficacy of lambda-cyhalothrin and larvivorous fish (Gambusia affinis) against Culex quinquefasciatus mosquitoes. J Vector Ecol 20:164–167

    Google Scholar 

  • Moore C, Mitchell C (1997) Aedes albopictus in the United States: ten-year presence and public health implications. Emerg Infect Dis 3:329–334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Müller R, Seeland A, Jagodzinski LS et al (2012) Simulated climate change conditions unveil the toxic potential of the fungicide pyrimethanil on the midge Chironomus riparius: a multigeneration experiment. Ecol Evol 2:196–210

    Article  PubMed Central  PubMed  Google Scholar 

  • Müller R, Knautz T, Völker J et al (2013) Appropriate larval food quality and quantity for Aedes albopictus (Diptera: Culicidae). J Med Entomol 50:74–79

    Article  Google Scholar 

  • Muturi EJ, Lampman R, Costanzo K, Alto BW (2011) Effect of temperature and insecticide stress on life-history traits of Culex restuans and Aedes albopictus (Diptera: Culicidae). J Med Entomol 48:243–250

    Article  CAS  PubMed  Google Scholar 

  • Nasci R (1990) Relationship of wing length to adult dry weight in several mosquito species (Diptera: Culicidae). J Med Entomol 27:716–719

    CAS  PubMed  Google Scholar 

  • NIST/SEMATECH (2006) Handbook of Statistical Methods. http://www.itl.nist.gov/div898/handbook/. Accessed 03 Oct 2006

  • OECD (2004) Sediment-water chironomid toxicity using spiked water. OECD guideline for testing chemicals: Test No. 219. Organisation for Economic Cooperation and Development, Paris, France

  • Pettit WJ, Whelan PI, McDonnell J, Jacups SP (2010) Efficacy of alpha-cypermethrin and lambda-cyhalothrin applications to prevent Aedes breeding in tires. J Am Mosq Control Assoc 26:387–397

    Article  PubMed  Google Scholar 

  • Porter JH, Parry ML, Carter TR (1991) The potential effects of climatic change on agricultural insect pests. Agric For Meteorol 57:221–240

    Article  Google Scholar 

  • PPDB Management Team (2014) lambda-Cyhalothrin (Ref: OMS 3021). In: Agric. Environ. Res. Unit, Sci. Technol. Res Inst Univ Hertfordsh. http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/415.htm. Accessed 02 Sept 2014

  • Roessink I, Arts GHP, Belgers JDM et al (2005) Effects of lambda-cyhalothrin in two ditch microcosm systems of different trophic status. Environ Toxicol Chem 24:1684–1696

    Article  CAS  PubMed  Google Scholar 

  • Sabatini A, Raineri V, Trovato G, Coluzzi M (1990) Aedes albopictus in Italy and possible diffusion of the species into the Mediterranean area. Parasitologia 32:301–304

    CAS  Google Scholar 

  • Salgado V, Herman M, Narahashi T (1989) Interactions of the pyrethroid fenvalerate with nerve membrane sodium channels: temperature dependence and mechanism of depolarization. Neurotoxicology 10:1–14

    CAS  PubMed  Google Scholar 

  • Santa-Ana M, Capela R, Christensen BM (2007) Reproductive costs of the immune response of the autogenous mosquito Culex pipiens molestus against inoculated Dirofilaria immitis. Vector Borne Zoonotic Dis 7:541–546

    Article  PubMed  Google Scholar 

  • Schaefer CH, Dupras EF, Mulligan FSJI (1990) ETOC() and lambda-cyhalothrin: new pyrethroid mosquito adulticides. J Am Mosq Control Assoc 6:621–624

    CAS  PubMed  Google Scholar 

  • Schmidt-Chanasit J, Haditsch M, Schoneberg I et al (2010) Dengue virus infection in a traveller returning from Croatia to Germany. Eurosurveillance 15:3–4

    Google Scholar 

  • Schroer AFW, Belgers JDM, Brock CM et al (2004) Comparison of laboratory single species and field population-level effects of the pyrethroid insecticide λ-cyhalothrin on freshwater invertebrates. Arch Environ Contam Toxicol 46:324–335

    Article  CAS  PubMed  Google Scholar 

  • Shroyer D (1986) Aedes albopictus and arboviruses: a concise review of the literature. J Am Mosq Control Assoc 2:424–428

    CAS  PubMed  Google Scholar 

  • Skuse FAA (1894) The banded mosquito of Bengal. Indian Mus Not 3:20

    Google Scholar 

  • Sparks TC, Shour MH, Wellemeyer EG (1982) Temperature–toxicity relationships of pyrethroids on three lepidopterans. J Econ Entomol 75:643–646

    CAS  Google Scholar 

  • Stocker T, Dahe Q, Plattner (Coordinating Lead Authors) G-K (2013) Working group I contribution to the IPCC 5th assessment report “climate change 2013: the physical science basis.” 2216

  • Stolz M (2008) Drucksache 14/2628: Antrag der Abg. Dieter Ehret u. a. FDP/DVP und Stellungnahme des Ministeriums für Arbeit und Soziales: Gesundheitliche Folgen des Klimawandels. Zo1125-14,27. Landtag von Baden-Württemberg, pp 1–6

  • Sulaiman S, Omar B, Jeffery J, Busparani V (1991) Evaluation of pyrethroids lambda-cyhalothrin, deltamethrin and permethrin against Aedes albopictus in the laboratory. J Am Mosq Control Assoc 7:322–323

    CAS  PubMed  Google Scholar 

  • Sulaiman S, Karim M, Omar B, Omar S (1995) Field-evaluation of alphacypermethrin and lambda-cyhalothrin against Aedes aegypti and Aedes albopictus in Malaysia. J Am Mosq Control Assoc 11:54–58

    CAS  PubMed  Google Scholar 

  • Suwansirisilp K, Visetson S, Prabaripai A et al (2012) Behavioral responses of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) to four essential oils in Thailand. J Pest Sci 86:309–320

    Article  Google Scholar 

  • Wessa P (2008) Box-cox normality plot (v1.0.6) in free statistics software (v1.1.23-r6), office for research development and education. http://www.wessa.net/rwasp_boxcoxnorm.wasp/. Accessed 2 Nov 2011

  • Weston DP, You J, Harwood AD, Lydy MJ (2009) Whole sediment toxicity identification evaluation tools for pyrethroid insecticides: III temperature manipulation. Environ Toxicol Chem 28:173–180

    Article  CAS  PubMed  Google Scholar 

  • Whelan P, Kulbac M, Bowbridge D, Krause V (2009) The eradication of Aedes aegypti from Groote Eylandt NT Australia 2006–2008. Arbovirus Res Aust 10:188–199

    Google Scholar 

  • World Health Organization (1998) Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (2009) Dengue, guidelines for diagnosis, treatment, prevention and control, new edition. World Health Organization, Geneva

    Google Scholar 

Download references

Acknowledgments

We are grateful to BioGents AG (Regensburg, Germany) for providing the two test species and a variety of helpful information and advice. Thanks to the GRADE—Goethe Graduate Academy Language Service for assisting in the proof-reading of the manuscript. The present study was conducted at the Biodiversity and Climate Research Centre (BiKF), Frankfurt am Main, Germany, and funded by the research funding program ´LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz´ of Hesse’s Ministry of Higher Education, Research, and the Arts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aljoscha Kreß.

Additional information

Communicated by E. Roditakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreß, A., Kuch, U., Oehlmann, J. et al. Impact of temperature and nutrition on the toxicity of the insecticide λ-cyhalothrin in full-lifecycle tests with the target mosquito species Aedes albopictus and Culex pipiens . J Pest Sci 87, 739–750 (2014). https://doi.org/10.1007/s10340-014-0620-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-014-0620-4

Keywords

Navigation