Skip to main content
Log in

Surface and Solvent Dependent Adsorption of Three Neuromedin-Like Peptides in Glass and Plastic Syringes

  • Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In the last decades, there is an increasing interest in the use of biomolecules, such as peptides, as therapeutic agents. One important challenge inherent to peptides and proteins is the occurrence of aspecific adsorption to all kind of surfaces, hampering drug research and development. In recent years, a lot of research was already performed highlighting adsorption during dissolution, sample pretreatment and analysis. However, only limited data is available about the loss of peptide caused by adsorption to the in vivo administration setup. For this communication we assessed the adsorption of three neuropeptides in glass and plastic syringes by measuring the neuropeptide concentration with nanoUHPLC–MS/MS as a function of time, delivered by the syringe at a flow rate of 2 μL/min. To create a more fundamental approach, three different infusion solvents were examined. Our results clearly show that—although peptide dependent—an important influence of the kind of syringe material and perfusion solvent can be seen on peptide recovery. In addition, we discuss different strategies, and their corresponding in vivo difficulties, to increase peptide recovery during administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20(1):122–128

    Article  CAS  PubMed  Google Scholar 

  2. Goebel-Stengel M, Stengel A, Tache Y, Reeve JR (2011) The importance of using the optimal plasticware and glassware in studies involving peptides. Anal Biochem 414(1):38–46. doi:10.1016/j.ab.2011.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anik ST, Hwang JY (1983) Adsorption of d-Nal(2)6lhrh, a decapeptide, onto glass and other surfaces. Int J Pharm 16(2):181–190. doi:10.1016/0378-5173(83)90055-8

    Article  CAS  Google Scholar 

  4. Penna MJ, Mijajlovic M, Biggs MJ (2014) Molecular-level understanding of protein adsorption at the interface between water and a strongly interacting uncharged solid surface. J Am Chem Soc 136(14):5323–5331. doi:10.1021/ja411796e

    Article  CAS  PubMed  Google Scholar 

  5. Maes K, Smolders I, Michotte Y, Van Eeckhaut A (2014) Strategies to reduce aspecific adsorption of peptides and proteins in liquid chromatography-mass spectrometry based bioanalyses: an overview. J Chromatogr A 1358:1–13. doi:10.1016/j.chroma.2014.06.072

    Article  CAS  PubMed  Google Scholar 

  6. Warwood S, Byron A, Humphries MJ, Knight D (2013) The effect of peptide adsorption on signal linearity and a simple approach to improve reliability of quantification. J Proteom 85:160–164. doi:10.1016/j.jprot.2013.04.034

    Article  CAS  Google Scholar 

  7. Kristensen K, Henriksen JR, Andresen TL (2015) Adsorption of cationic peptides to solid surfaces of glass and plastic. PLoS One 10(5):e0122419. doi:10.1371/journal.pone.0122419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maes K, Van Liefferinge J, Viaene J, Van Schoors J, Van Wanseele Y, Bechade G, Chambers EE, Morren H, Michotte Y, Vander Heyden Y, Claereboudt J, Smolders I, Van Eeckhaut A (2014) Improved sensitivity of the nano ultra-high performance liquid chromatography-tandem mass spectrometric analysis of low-concentrated neuropeptides by reducing aspecific adsorption and optimizing the injection solvent. J Chromatogr A 1360:217–228. doi:10.1016/j.chroma.2014.07.086

    Article  CAS  PubMed  Google Scholar 

  9. Zhou Y, Wong JM, Mabrouk OS, Kennedy RT (2015) Reducing adsorption to improve recovery and in vivo detection of neuropeptides by microdialysis with LC–MS. Anal Chem 87(19):9802–9809. doi:10.1021/acs.analchem.5b02086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thompson CD, Vital-Carona J, Faustino EV (2012) The effect of tubing dwell time on insulin adsorption during intravenous insulin infusions. Diabetes Technol Ther 14(10):912–916. doi:10.1089/dia.2012.0098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jakobsson T, Shulman R, Gill H, Taylor K (2009) The impact of insulin adsorption onto the infusion sets in the adult intensive care unit. J Diabetes Sci Technol 3(1):213–214

    Article  PubMed  PubMed Central  Google Scholar 

  12. Di Stasio E, De Cristofaro R (2010) The effect of shear stress on protein conformation: physical forces operating on biochemical systems: the case of von Willebrand factor. Biophys Chem 153(1):1–8. doi:10.1016/j.bpc.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  13. Maes K, Bechade G, Van Schoors J, Van Wanseele Y, Van Liefferinge J, Michotte Y, Harden SN, Chambers EE, Claereboudt J, Smolders I, Van Eeckhaut A (2015) An ultrasensitive nano UHPLC–ESI–MS/MS method for the quantification of three neuromedin-like peptides in microdialysates. Bioanalysis 7(5):605–619. doi:10.4155/bio.14.269

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Gan H, Sun TL (2011) Chiral design for polymeric biointerface: the influence of surface chirality on protein adsorption. Adv Funct Mater 21(17):3276–3281. doi:10.1002/adfm.201101032

    Article  CAS  Google Scholar 

  15. Van Eeckhaut A, Maes K, Aourz N, Smolders I, Michotte Y (2011) The absolute quantification of endogenous levels of brain neuropeptides in vivo using LC–MS/MS. Bioanalysis 3(11):1271–1285. doi:10.4155/bio.11.91

    Article  CAS  PubMed  Google Scholar 

  16. Van Eeckhaut A, Mangelings D (2015) Toward greener analytical techniques for the absolute quantification of peptides in pharmaceutical and biological samples. J Pharm Biomed Anal 113:181–188. doi:10.1016/j.jpba.2015.03.023

    Article  CAS  PubMed  Google Scholar 

  17. Suelter CH, DeLuca M (1983) How to prevent losses of protein by adsorption to glass and plastic. Anal Biochem 135(1):112–119

    Article  CAS  PubMed  Google Scholar 

  18. Maidment NT, Brumbaugh DR, Rudolph VD, Erdelyi E, Evans CJ (1989) Microdialysis of extracellular endogenous opioid peptides from rat brain in vivo. Neuroscience 33(3):549–557

    Article  CAS  PubMed  Google Scholar 

  19. Mertes PM, Beck B, Jaboin Y, Stricker A, Carteaux JP, Pinelli G, el Abassi K, Villemot JP, Burlet C, Boulange M (1993) Microdialysis in the estimation of interstitial myocardial neuropeptide Y release. Regul Pept 49(1):81–90

    Article  CAS  PubMed  Google Scholar 

  20. Ernberg MM, Alstergren PJ (2004) Microdialysis of neuropeptide Y in human muscle tissue. J Neurosci Methods 132(2):185–190

    Article  CAS  PubMed  Google Scholar 

  21. Orlowska-Majdak M (2004) Microdialysis of the brain structures: application in behavioral research on vasopressin and oxytocin. Acta Neurobiol Exp 64(2):177–188

    Google Scholar 

  22. Voltolini S, Spigno F, Cioe A, Cagnati P, Bignardi D, Minale P (2013) Bovine serum albumin: a double allergy risk. Eur Ann Allergy Clin Immunol 45(4):144–147

    CAS  PubMed  Google Scholar 

  23. Sadatmousavi P, Kovalenko E, Chen P (2014) thermodynamic characterization of the interaction between a peptide-drug complex and serum proteins. Langmuir 30(37):11122–11130. doi:10.1021/la502422u

    Article  CAS  PubMed  Google Scholar 

  24. Smith DA, Di L, Kerns EH (2010) The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov 9(12):929–939. doi:10.1038/nrd3287

    Article  CAS  PubMed  Google Scholar 

  25. Toutain PL, Bousquet-Melou A (2002) Free drug fraction vs. free drug concentration: a matter of frequent confusion. J Vet Pharmacol Ther 25(6):460–463. doi:10.1046/j.1365-2885.2002.00442.x

    Article  CAS  PubMed  Google Scholar 

  26. Saint-Gobain Desjonqueres Pharmaceutical Division. Siliconization. https://www.pharmaceuticalonline.com/doc/siliconization-0001. Accessed May 2017

  27. Behrens SH, Grier DG (2001) The charge of glass and silica surfaces. J Chem Phys 115(14):6716–6721. doi:10.1063/1.1404988

    Article  CAS  Google Scholar 

  28. Grohganz H, Rischer M, Brandl M (2004) Adsorption of the decapeptide Cetrorelix depends both on the composition of dissolution medium and the type of solid surface. Eur J Pharm Sci 21(2–3):191–196

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Van Eeckhaut.

Ethics declarations

Funding

Yannick Van Wanseele is a research fellow of the Fund for Scientific Research Flanders (FWO Vlaanderen). The authors would like to thank the Queen Elisabeth Medical Foundation and the ‘Prijs Burggravin Valine de Spoelberch anno 2010’.

Conflict of interest

All authors declare they have no conflict of interest.

Human and animal rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Published in the topical collection Peptide and Protein Analysis with Debby Mangelings and Gerhard K. E. Scriba as editors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Wanseele, Y., Maes, K., Lanckmans, K. et al. Surface and Solvent Dependent Adsorption of Three Neuromedin-Like Peptides in Glass and Plastic Syringes. Chromatographia 81, 65–72 (2018). https://doi.org/10.1007/s10337-017-3397-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-017-3397-9

Keywords

Navigation