Skip to main content
Log in

Using Size-Exclusion Chromatography to Monitor the Stabilization of Au Nanoparticles in the Presence of Salt and Organic Solvent

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

This paper reports the use of size-exclusion chromatography (SEC) to assess the size stabilization of Au nanoparticles (NPs) in the presence of salt and organic solvent. In the absence of an adequate stabilizer for the Au NP solution, the presence of salt (NaCl) or an organic solvent (MeOH) resulted in the near disappearance of the signal of the Au NPs in the elution spectra after SEC separation, as a result of the Au NPs forming larger agglomerates under such conditions. In contrast, when the Au NPs were capped with an adequate stabilizer [i.e., 3A-amino-3A-deoxy-(2AS,3AS)-β-cyclodextrin (H2N-β-CD)], the elution time of the signal for the Au NPs and their elution spectra after SEC separation were barely affected by the presence of salt or organic solvent. Thus, H2N-β-CD is a good stabilizer against the coagulation of Au NPs in the presence of salt or organic solvent. In addition, this study confirms that SEC—with its short analysis times, low operating costs, automated operation, and in situ analysis—is highly applicable for the rapid analysis of Au NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jana NR, Gearheart L, Murphy CJ (2001) Chem Mater 13:2313–2322

    Article  CAS  Google Scholar 

  2. Schmid G (1994) Clusters and colloids: from theory to applications. VCH, New York

    Book  Google Scholar 

  3. Schmid G, Baumle M, Geerkens M, Helm I, Osemann C, Sawitowski T (1999) Chem Soc Rev 28:179–185

    Article  CAS  Google Scholar 

  4. Aiken JD III, Finke RG (1999) J Mol Catal A 145:1–44

    Article  CAS  Google Scholar 

  5. Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2000) Chem Soc Rev 29:27–35

    Article  CAS  Google Scholar 

  6. Templeton AC, Wuelfing MP, Murray RW (2000) Acc Chem Res 33:27–36

    Article  CAS  Google Scholar 

  7. Henglein A (1989) Chem Rev 89:1861–1873

    Article  CAS  Google Scholar 

  8. Henglein A (1993) J Phys Chem 97:5457–5471

    Article  CAS  Google Scholar 

  9. Chen SW, Ingram RS, Hostetler MJ, Pietron JJ, Murray RW, Schaaff TG, Khoury JT, Alvarez MM, Whetten RL (1998) Science 280:2098–2101

    Article  CAS  Google Scholar 

  10. Jana NR, Sau TK, Pal T (1999) J Phys Chem B 103:115–121

    Article  CAS  Google Scholar 

  11. Murphy CJ (2002) Science 298:2139–2141

    Article  CAS  Google Scholar 

  12. Chang TH, Liu FK, Chang YC, Chu TC (2008) Chromatographia 67:723–730

    Article  CAS  Google Scholar 

  13. Liu FK (2009) J Chromatogr A 1216:9034–9047

    Article  CAS  Google Scholar 

  14. Male KB, Li J, Ching CB, Ng SC, Luong JHT (2008) J Phys Chem C 112:443–451

    Article  CAS  Google Scholar 

  15. Haruta M (2003) Chem Rec 3:75–87

    Article  CAS  Google Scholar 

  16. Abad A, Concepcion P, Corma A, Garcia H (2005) Angew Chem Int Ed 44:4066–4069

    Article  CAS  Google Scholar 

  17. Thielecke N, Ayternir M, Prusse U (2007) Catal Today 121:115–120

    Article  CAS  Google Scholar 

  18. Corti CW, Holliday RJ, Thompson DT (2007) Top Catal 44:331–343

    Article  CAS  Google Scholar 

  19. Tsunoyama H, Liu Y, Akita T, Ichikuni N, Sakurai H, Xie S, Tsukuda T (2011) Catal Surv Asia 15:230–239

    Article  CAS  Google Scholar 

  20. Thompson DT (2006) Top Catal 38:231–240

    Article  CAS  Google Scholar 

  21. Han J, Liu Y, Guo R (2009) J Am Chem Soc 131:2060–2061

    Article  CAS  Google Scholar 

  22. Suramanee P, Poompradub S, Rojanathanes R, Thamyongkit P (2011) Catal Lett 141:1677–1684

    Article  CAS  Google Scholar 

  23. Dieckmann Y, Colfen H, Hofmann H, Petri-Fink A (2009) Anal Chem 81:3889–3895

    Article  CAS  Google Scholar 

  24. Farre M, Gajda-Schrantz K, Kantiani L, Barcelo D (2009) Anal Bioanal Chem 393:81–95

    Article  CAS  Google Scholar 

  25. Sykora D, Kasicka V, Miksik I, Rezanka P, Zaruba K, Matejka P, Kral V (2010) J Sep Sci 33:372–387

    Article  CAS  Google Scholar 

  26. Gaikwad AV, Verschuren P, Eiser E, Rothenberg G (2006) J Phys Chem B 110:17437–17443

    Article  CAS  Google Scholar 

  27. Liu FK (2010) Anal Sci 26:1145–1150

    Article  CAS  Google Scholar 

  28. Contado C, Argazzi R (2009) J Chromatogr A 1216:9088–9098

    Article  CAS  Google Scholar 

  29. Liu FK (2007) Chromatographia 66:791–796

    Article  CAS  Google Scholar 

  30. Liu FK (2008) Chromatographia 68:81–87

    Article  CAS  Google Scholar 

  31. Liu FK (2009) Chromatographia 70:7–13

    Article  CAS  Google Scholar 

  32. Liu FK, Chang YC (2011) Chromatographia 74:767–775

    Article  CAS  Google Scholar 

  33. Wilcoxon JP, Martin JE, Provencio P (2000) Langmuir 16:9912–9920

    Article  CAS  Google Scholar 

  34. Cha JH, Kim KS, Choi S, Yeon SH, Lee H, Lee CS, Shim JJ (2007) Korean J Chem Eng 24:1089–1094

    Article  CAS  Google Scholar 

  35. Liu FK (2007) J Chromatogr A 1167:231–235

    Article  CAS  Google Scholar 

  36. Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley, New Jersey

    Book  Google Scholar 

  37. Link S, El-Sayed MA (1999) J Phys Chem B 103:4212–4217

    Article  CAS  Google Scholar 

  38. Yang Y, Boysen RI, Hearn MTW (2004) J Chromatogr A 1043:81–89

    Article  CAS  Google Scholar 

  39. Schwer C, Kenndler E (1991) Anal Chem 63:1801–1807

    Article  CAS  Google Scholar 

  40. Nair AS, Pradeep T (2007) J Nanosci Nanotechnol 7:1871–1877

    Article  CAS  Google Scholar 

  41. Liu J, Xu RL, Kaifer AE (1998) Langmuir 14:7337–7339

    Article  CAS  Google Scholar 

  42. Liu J, Mendoza S, Roman E, Lynn MJ, Xu RL, Kaifer AE (1999) J Am Chem Soc 121:4304–4305

    Article  CAS  Google Scholar 

  43. Liu J, Ong W, Roman E, Lynn MJ, Kaifer AE (2000) Langmuir 16:3000–3002

    Article  CAS  Google Scholar 

  44. Alvarez J, Liu J, Roman E, Kaifer AE (2000) Chem Commun 1151–1152

  45. Zhu T, Fu XY, Mu T, Wang J, Liu ZF (1999) Langmuir 15:5197–5199

    Article  CAS  Google Scholar 

  46. Senra JD, Malta LFB, da Costa MEHM, Michel RC, Aguiar LCS, Simas ABC, Antunes OAC (2009) Adv Synth Catal 351:2411–2422

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported financially by the National Science Council, Taiwan (NSC 100-2113-M-390-002-MY3). The author thanks Dr. Yu-Cheng Chang for the TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Ken Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, FK. Using Size-Exclusion Chromatography to Monitor the Stabilization of Au Nanoparticles in the Presence of Salt and Organic Solvent. Chromatographia 75, 1099–1105 (2012). https://doi.org/10.1007/s10337-012-2287-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-012-2287-4

Keywords

Navigation