Skip to main content
Log in

Body mass loss amongst moulting Pochard Aythya ferina and Tufted Duck A. fuligula at Abberton Reservoir, South East England

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

We assessed the contribution of endogenous fat stores to meeting energetic needs during the flightless moult period in Pochard and Tufted Duck by regressing mass on the progression of wing moult, as measured by primary length. Pochard lost between 22.1% (males) and 24.2% (females) of body mass and female Tufted Duck 12.2% during wing moult at Abberton Reservoir, Essex. Based on a 27-day flightless period, Pochard lost on average 8.3–8.4 g per day and Tufted Duck 3.2–3.4 g per day, presumably due to fat expenditure. Assuming the daily energy expenditure (DEE) to be 1.7× the basal metabolic rate (BMR), the contribution from burning endogenous fat equated to 37–40% of Pochard and 19–20% of Tufted Duck DEE during remiges moult. One frequently re-trapped female Pochard expended fat stores that almost fulfilled her entire energetic requirements during moult if she rested and did not feed for most of the moult. These results confirm that Pochard and Tufted Duck accumulate fat stores that help to meet energetic needs during the flightless wing moult period. This endogenous source of energy may free them to exploit habitats that are safe from predation but which may not fully supply the energetic needs of moulting ducks from exogenous sources.

Zusammenfassung

Wir erfassten den Anteil endogener Fettreserven an der Bewältigung energetischer Anforderungen während der mauserbedingten Flugunfähigkeit bei Tafel- und Reiherenten durch Regression der Masse gegen das Fortschreiten der Flügelmauser, gemessen an der Länge der Handschwingen. Am Abberton Reservoir in Essex verloren Tafelenten zwischen 22,1% (Männchen) and 24,2% (Weibchen) Körpermasse, während Reiherentenweibchen 12,2% Körpermasse verloren. Gemessen an einer flugunfähigen Periode von 27 Tagen verloren Tafelenten durchschnittlich 8,3–8,4 g pro Tag und Reiherenten 3,2–3,4 g pro Tag, was vermutlich auf die Nutzung von Fettdepots zurückzuführen ist. Unter der Annahme eines täglichen Energiebedarfs (DEE) von 1,7× Grundstoffwechselrate (BMR) beträgt der Verbrauch von endogenen Fettreserven während der Mauser der Flugfedern 37–40% des DEE bei Tafelenten und 19–20% bei Reiherenten. Eine mehrfach wieder gefangene weibliche Tafelente verbrauchte Fettreserven, die allein nahezu ihren gesamten Energiebedarf während der Mauser decken könnten, sofern sie rastet und nicht nach Futter sucht. Diese Ergebnisse bestätigen, dass Tafel- und Reiherenten Fettreserven anlegen, die ihnen helfen, die flugunfähige Zeit der Mauser zu überbrücken. Diese endogenen Energiereserven erlauben es ihnen Habitate aufzusuchen, die sicher vor Fressfeinden sind, aber nicht ausreichend Futterquellen bieten, um den Energiebedarf während der Mauser zu decken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bailey RO (1982) The postbreeding ecology of the Redhead duck (Anas americana) on Long Island Bay, Lake Winnipegosis, Manitoba (Ph.D. thesis). McGill University, Montreal

  • Bell DV, Austin LW (1985) The game-fishing season and its effects on overwintering wildfowl. Biol Conserv 33:65–80

    Article  Google Scholar 

  • Bevan RM, Speakman JR, Butler PJ (1995) Daily energy expenditure of Tufted Ducks: a comparison between indirect colorimetry, doubly labelled water and heart rate. Funct Ecol 9:40–47

    Article  Google Scholar 

  • Cramp S, Simmons KEL (eds) (1977) The birds of the western Palearctic, vol. 1. Oxford University Press, Oxford

  • De Leeuw JJ, van Eerden MR, Visser GH (1999) Wintering Tufted Ducks Aythya fuligula diving for zebra mussels Dreissena polymorpha balance feeding costs within narrow margins of their energy budget. J Avian Biol 30:182–192

    Article  Google Scholar 

  • Drent R, Ebbinge B, Weijand B (1981) Balancing the energy budgets of arctic-breeding geese throughout the annual cycle: a progress report. Verh Ornithol Ges Bayern 23:239–264

    Google Scholar 

  • Evans DM, Day KR (2001) Does shooting disturbance affect diving ducks wintering on large lakes? A case study on Lough Neagh, Northern Ireland. Biol Conserv 98:315–323

    Article  Google Scholar 

  • Folk C, Hudec K, Toufar J (1966) The weight of the Mallard Anas platyrhynchos and its changes in the course of a year. Zool Listy 15:249–260

    Google Scholar 

  • Fox AD, Kahlert J (1999) Adjustments to nitrogen metabolism during wing moult in greylag geese. Funct Ecol 13:661–669

    Article  Google Scholar 

  • Fox AD, Kahlert J (2005) Changes in body mass and organ size during wing moult in non-breeding greylag geese Anser anser. J Avian Biol 36:538–548

    Article  Google Scholar 

  • Fox AD, Salmon DG (1988) Changes in non-breeding distribution and habitat of Pochard Aythya ferina in Britain. Biol Conserv 46:303–316

    Article  Google Scholar 

  • Fox AD, Jones TA, Singleton R, Agnew ADQ (1994) Food supply and the effects of recreational disturbance on the distribution and abundance of wintering Pochard on a gravel pit complex in southern Britain. Hydrobiologia 279(280):253–261

    Article  Google Scholar 

  • Fox AD, Hartmann P, Petersen IK (2008) Changes in body mass and organ size during remigial moult in common scoter Melanitta nigra. J Avian Biol 39:35–40

    Article  Google Scholar 

  • Fox AD, Hobson KA, Kahlert J (2009) Isotopic evidence for endogenous protein contributions to greylag goose Anser anser flight feathers. J Avian Biol 40:108–112

    Article  Google Scholar 

  • Hanson H (1962) The dynamics of condition factors in Canada geese and their relation to nutritional stress. Arctic Inst N Am Tech Pap 12:1–68

    Google Scholar 

  • Hay RL (1974) Molting biology of male Gadwall at Delta, Manitoba (M.Sc. thesis). University of Wisconsin, Madison

  • Hohman WL, Taylor TS, Weller MW (1988) Annual body weight change in ring-necked ducks (Aythya collaris). In: Weller M (ed) Waterfowl in winter. University of Minnesota Press, Minneapolis, pp 257–269

    Google Scholar 

  • Hohman WL, Ankney CD, Gordon DH (1992) Ecology and management of postbreeding waterfowl. In: Batt BDJ, Afton AD, Anderson MG, Ankney CD, Johnson DH, Kadlec JA, Krapu GL (eds) Ecology and management of breeding waterfowl. University of Minnesota Press, Minneapolis, pp 128–189

    Google Scholar 

  • Kahlert J (2006) Effects of feeding patterns on body mass loss in moulting greylag geese Anser anser. Bird Study 53:20–31

    Article  Google Scholar 

  • Marsden SJ (2001) Impact of disturbance on waterfowl wintering in a UK Dockland Redevelopment Area. Environ Manage 26:207–213

    Article  Google Scholar 

  • Mooij JH (1992) Behaviour and energy budget of wintering geese in the Lower Rhine area of North Rhine-Westphalia, Germany. Wildfowl 43:121–138

    Google Scholar 

  • Panek M, Majewski P (1990) Remex growth and body mass of Mallards during wing molt. Auk 107:255–259

    Article  Google Scholar 

  • Pehrsson O (1987) Effects of body condition on molting Mallards. Condor 89:329–339

    Article  Google Scholar 

  • Pennycuick CJ (2008) Modelling the flying bird. Elsevier, London

    Google Scholar 

  • Piersma T (1990) Pre-migratory “fattening” usually involves more than the deposition of fat alone. Ring Migr 11:113–115

    Article  Google Scholar 

  • Portugal SJ, Green JA, Butler PJ (2007) Annual changes in body mass and resting metabolism in captive barnacle geese (Branta leucopsis): the importance of wing moult. J Exp Biol 210:1391–1397

    Article  Google Scholar 

  • Portugal SJ, Thorpe SKS, Green JA, Myatt JP, Butler PJ (2009) Testing the use/disuse hypothesis: pectoral and leg muscle changes in captive barnacle geese Branta leucopsis during wing moult. J Exp Biol 212:2403–2410

    Article  Google Scholar 

  • Portugal SJ, Isaac R, Quinton KL, Reynolds SJ (2010) Do captive waterfowl alter their behaviour patterns during their flightless period of moult? J Ornithol 151:443–448

    Article  Google Scholar 

  • Salomonsen F (1968) The moult migration. Wildfowl 19:5–24

    Google Scholar 

  • Sjöberg K (1988) The flightless period of free-living male Teal Anas crecca in northern Sweden. Ibis 130:164–171

    Article  Google Scholar 

  • Thompson JE (1992) The nutritional ecology of molting male Canvasbacks (Aythya valisineria) in central Alberta (M.S. thesis). University of Missouri, Columbia

  • Thompson JE, Drobney RD (1995) Intensity and chronology of post-reproductive molts in male Canvasbacks. Wilson Bull 107:338–358

    Google Scholar 

  • Thompson JE, Drobney RD (1996) Nutritional consequences of molt in male canvasbacks: variation in nutrient reserves and digestive tract morphology. Condor 98:512–526

    Article  Google Scholar 

  • Thompson JE, Drobney RD (1997) Diet and nutrition of male canvasbacks during post-reproductive molts. J Wildl Manage 61:426–434

    Article  Google Scholar 

  • Wernham CV, Toms MP, Marchant JH, Clark JA, Siriwardena GM, Baillie SR (eds) (2002) The migration atlas: movements of the birds of Britain and Ireland. T and AD Poyser, London

  • Young DA, Boag DA (1982) Changes in physical condition of male Mallards (Anas platyrhynchos) during moult. Can J Zool 60:3220–3226

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Johnny Kahlert and two anonymous referees for comments and improvements on an earlier version, and to the then Essex Water for allowing WWT to catch and ring ducks at Abberton Reservoir.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony D. Fox.

Additional information

Communicated by C. G. Guglielmo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, A.D., King, R. Body mass loss amongst moulting Pochard Aythya ferina and Tufted Duck A. fuligula at Abberton Reservoir, South East England. J Ornithol 152, 727–732 (2011). https://doi.org/10.1007/s10336-011-0656-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-011-0656-7

Keywords

Navigation