Skip to main content
Log in

Measurement techniques for magnetic resonance imaging of fast relaxing nuclei

  • Review Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

In this review article, techniques for sodium (23Na) magnetic resonance imaging (MRI) are presented. These techniques can also be used to image other nuclei with short relaxation times (e.g., 39K, 35Cl, 17O). Twisted projection imaging, density-adapted 3D projection reconstruction, and 3D cones are preferred because of uniform k-space sampling and ultra-short echo times. Sampling density weighted apodization can be applied if intrinsic filtering is desired. This approach leads to an increased signal-to-noise ratio compared to postfiltered acquisition in cases of short readout durations relative to T *2 relaxation time. Different MR approaches for anisotropic resolution are presented, which are important for imaging of thin structures such as myocardium, cartilage, and skin. The third part of this review article describes different methods to put more weighting either on the intracellular or the extracellular sodium signal by means of contrast agents, relaxation-weighted imaging, or multiple-quantum filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hilal SK, Ra JB, Oh CH, Mun IK, Einstein SG, Roschmann P (1988) Sodium imaging. In: Stark DD, Bradly WG (eds) Magnetic resonance imaging. C.V. Mosby, St. Louis, pp 715–729

    Google Scholar 

  2. Boada FE, Laverde G, Jungreis C, Nemoto E, Tanase C, Hancu I (2005) Loss of cell ion homeostasis and cell viability in the brain: what sodium MRI can tell us. Curr Top Dev Biol 70:77–101

    CAS  PubMed  Google Scholar 

  3. Sandstede JJ, Hillenbrand H, Beer M, Pabst T, Butter F, Machann W, Bauer W, Hahn D, Neubauer S (2004) Time course of 23Na signal intensity after myocardial infarction in humans. Magn Reson Med 52(3):545–551

    CAS  PubMed  Google Scholar 

  4. Thulborn KR, Davis D, Adams H, Gindin T, Zhou J (1999) Quantitative tissue sodium concentration mapping of the growth of focal cerebral tumors with sodium magnetic resonance imaging. Magn Reson Med 41(2):351–359

    CAS  PubMed  Google Scholar 

  5. Ouwerkerk R, Bleich KB, Gillen JS, Pomper MG, Bottomley PA (2003) Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology 227(2):529–537

    PubMed  Google Scholar 

  6. Schepkin VD, Lee KC, Kuszpit K, Muthuswami M, Johnson TD, Chenevert TL, Rehemtulla A, Ross BD (2006) Proton and sodium MRI assessment of emerging tumor chemotherapeutic resistance. NMR Biomed 19(8):1035–1042

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Nagel AM, Bock M, Hartmann C, Gerigk L, Neumann JO, Weber MA, Bendszus M, Radbruch A, Wick W, Schlemmer HP, Semmler W, Biller A (2011) The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol 46(9):539–547

    PubMed  Google Scholar 

  8. Thulborn KR, Gindin TS, Davis D, Erb P (1999) Comprehensive MR imaging protocol for stroke management: tissue sodium concentration as a measure of tissue viability in nonhuman primate studies and in clinical studies. Radiology 213(1):156–166

    CAS  PubMed  Google Scholar 

  9. Thulborn KR, Davis D, Snyder J, Yonas H, Kassam A (2005) Sodium MR imaging of acute and subacute stroke for assessment of tissue viability. Neuroimaging Clin N Am 15(3):639–653

    PubMed  Google Scholar 

  10. Hussain MS, Stobbe RW, Bhagat YA, Emery D, Butcher KS, Manawadu D, Rizvi N, Maheshwari P, Scozzafava J, Shuaib A, Beaulieu C (2009) Sodium imaging intensity increases with time after human ischemic stroke. Ann Neurol 66(1):55–62

    PubMed  Google Scholar 

  11. Tsang A, Stobbe RW, Asdaghi N, Hussain MS, Bhagat YA, Beaulieu C, Emery D, Butcher KS (2011) Relationship between sodium intensity and perfusion deficits in acute ischemic stroke. J Magn Reson Imaging 33(1):41–47

    PubMed  Google Scholar 

  12. Inglese M, Madelin G, Oesingmann N, Babb JS, Wu W, Stoeckel B, Herbert J, Johnson G (2010) Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 Tesla. Brain 133(Pt 3):847–857

    CAS  PubMed  Google Scholar 

  13. Zaaraoui W, Konstandin S, Audoin B, Nagel AM, Rico A, Malikova I, Soulier E, Viout P, Confort-Gouny S, Cozzone PJ, Pelletier J, Schad LR, Ranjeva JP (2012) Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional 23Na MR imaging study. Radiology 264(3):859–867

    PubMed  Google Scholar 

  14. Mellon EA, Pilkinton DT, Clark CM, Elliott MA, Witschey WR 2nd, Borthakur A, Reddy R (2009) Sodium MR imaging detection of mild Alzheimer disease: preliminary study. AJNR Am J Neuroradiol 30(5):978–984

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Henzler T, Konstandin S, Schmid-Bindert G, Apfaltrer P, Haneder S, Wenz F, Schad L, Manegold C, Schoenberg SO, Fink C (2012) Imaging of tumor viability in lung cancer: initial results using 23Na-MRI. Rofo 184(4):340–344

    CAS  PubMed  Google Scholar 

  16. Sandstede JJ, Pabst T, Beer M, Lipke C, Baurle K, Butter F, Harre K, Kenn W, Voelker W, Neubauer S, Hahn D (2001) Assessment of myocardial infarction in humans with (23)Na MR imaging: comparison with cine MR imaging and delayed contrast enhancement. Radiology 221(1):222–228

    CAS  PubMed  Google Scholar 

  17. Jerecic R, Bock M, Nielles-Vallespin S, Wacker C, Bauer W, Schad LR (2004) ECG-gated 23Na-MRI of the human heart using a 3D-radial projection technique with ultra-short echo times. Magn Reson Mater Phy 16(6):297–302

    CAS  Google Scholar 

  18. Ouwerkerk R, Bottomley PA, Solaiyappan M, Spooner AE, Tomaselli GF, Wu KC, Weiss RG (2008) Tissue sodium concentration in myocardial infarction in humans: a quantitative 23Na MR imaging study. Radiology 248(1):88–96

    PubMed Central  PubMed  Google Scholar 

  19. Konstandin S, Schad LR (2012) Two-dimensional radial sodium heart MRI using variable-rate selective excitation and retrospective electrocardiogram gating with golden angle increments. Magn Reson Med. doi:10.1002/mrm.24523

    Google Scholar 

  20. Maril N, Rosen Y, Reynolds GH, Ivanishev A, Ngo L, Lenkinski RE (2006) Sodium MRI of the human kidney at 3 Tesla. Magn Reson Med 56(6):1229–1234

    CAS  PubMed  Google Scholar 

  21. Rosen Y, Lenkinski RE (2009) Sodium MRI of a human transplanted kidney. Acad Radiol 16(7):886–889

    PubMed  Google Scholar 

  22. Haneder S, Konstandin S, Morelli JN, Nagel AM, Zoellner FG, Schad LR, Schoenberg SO, Michaely HJ (2011) Quantitative and qualitative (23)Na MR imaging of the human kidneys at 3 T: before and after a water load. Radiology 260(3):857–865

    PubMed  Google Scholar 

  23. Hausmann D, Konstandin S, Wetterling F, Haneder S, Nagel AM, Dinter DJ, Schonberg SO, Zollner FG, Schad LR (2012) Apparent diffusion coefficient and sodium concentration measurements in human prostate tissue via hydrogen-1 and sodium-23 magnetic resonance imaging in a clinical setting at 3T. Invest Radiol 47(12):677–682

    CAS  PubMed  Google Scholar 

  24. Constantinides CD, Gillen JS, Boada FE, Pomper MG, Bottomley PA (2000) Human skeletal muscle: sodium MR imaging and quantification-potential applications in exercise and disease. Radiology 216(2):559–568

    CAS  PubMed  Google Scholar 

  25. Nielles-Vallespin S, Weber MA, Bock M, Bongers A, Speier P, Combs SE, Wohrle J, Lehmann-Horn F, Essig M, Schad LR (2007) 3D radial projection technique with ultrashort echo times for sodium MRI: clinical applications in human brain and skeletal muscle. Magn Reson Med 57(1):74–81

    CAS  PubMed  Google Scholar 

  26. Nagel AM, Amarteifio E, Lehmann-Horn F, Jurkat-Rott K, Semmler W, Schad LR, Weber MA (2011) 3 Tesla sodium inversion recovery magnetic resonance imaging allows for improved visualization of intracellular sodium content changes in muscular channelopathies. Invest Radiol 46(12):759–766

    CAS  PubMed  Google Scholar 

  27. Reddy R, Insko EK, Noyszewski EA, Dandora R, Kneeland JB, Leigh JS (1998) Sodium MRI of human articular cartilage in vivo. Magn Reson Med 39(5):697–701

    CAS  PubMed  Google Scholar 

  28. Borthakur A, Shapiro EM, Beers J, Kudchodkar S, Kneeland JB, Reddy R (2000) Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthritis Cartilage 8(4):288–293

    CAS  PubMed  Google Scholar 

  29. Shapiro EM, Borthakur A, Gougoutas A, Reddy R (2002) 23Na MRI accurately measures fixed charge density in articular cartilage. Magn Reson Med 47(2):284–291

    PubMed Central  PubMed  Google Scholar 

  30. Wheaton AJ, Borthakur A, Shapiro EM, Regatte RR, Akella SV, Kneeland JB, Reddy R (2004) Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging—feasibility study. Radiology 231(3):900–905

    PubMed  Google Scholar 

  31. Trattnig S, Welsch GH, Juras V, Szomolanyi P, Mayerhoefer ME, Stelzeneder D, Mamisch TC, Bieri O, Scheffler K, Zbyn S (2010) 23Na MR imaging at 7 T after knee matrix-associated autologous chondrocyte transplantation preliminary results. Radiology 257(1):175–184

    PubMed  Google Scholar 

  32. Thulborn KR, Lu A, Atkinson IC, Damen F, Villano JL (2009) Quantitative sodium MR imaging and sodium bioscales for the management of brain tumors. Neuroimaging Clin N Am 19(4):615–624

    PubMed Central  PubMed  Google Scholar 

  33. Jennings RB, Sommers HM, Kaltenbach JP, West JJ (1964) Electrolyte alterations in acute myocardial ischemic injury. Circ Res 14:260–269

    CAS  PubMed  Google Scholar 

  34. Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82(2):503–568

    CAS  PubMed  Google Scholar 

  35. Fieno DS, Kim RJ, Rehwald WG, Judd RM (1999) Physiological basis for potassium (39K) magnetic resonance imaging of the heart. Circ Res 84(8):913–920

    CAS  PubMed  Google Scholar 

  36. Augath M, Heiler P, Kirsch S, Schad LR (2009) In vivo 39K, 23Na and 1H MR imaging using a triple resonant RF coil setup. J Magn Reson 200(1):134–136

    CAS  PubMed  Google Scholar 

  37. Romanenko KV, Cano-Barrita PF, Balcom BJ (2009) (35)Cl profiling using centric scan SPRITE with variable flip angle excitation. J Magn Reson 198(1):24–30

    CAS  PubMed  Google Scholar 

  38. Kirsch S, Augath M, Seiffge D, Schilling L, Schad LR (2010) In vivo chlorine-35, sodium-23 and proton magnetic resonance imaging of the rat brain. NMR Biomed 23(6):592–600

    PubMed  Google Scholar 

  39. Nagel AM, Weber MA, Lehmann-Horn F, Jurkat-Rott K, Radbruch A, Umathum R, Semmler W (2013) Chlorine (35Cl) MRI in humans: Cl—alterations do not correspond to disease-related Na + changes. In: Proceedings of the 21st scientific meeting, International Society for Magnetic Resonance in Medicine, Salt Lake City, p 116

  40. Zhu XH, Zhang Y, Tian RX, Lei H, Zhang N, Zhang X, Merkle H, Ugurbil K, Chen W (2002) Development of (17)O NMR approach for fast imaging of cerebral metabolic rate of oxygen in rat brain at high field. Proc Natl Acad Sci USA 99(20):13194–13199

    CAS  PubMed  Google Scholar 

  41. Fiat D, Hankiewicz J, Liu S, Trbovic S, Brint S (2004) 17O magnetic resonance imaging of the human brain. Neurol Res 26(8):803–808

    PubMed  Google Scholar 

  42. Zhang N, Zhu XH, Lei H, Ugurbil K, Chen W (2004) Simplified methods for calculating cerebral metabolic rate of oxygen based on 17O magnetic resonance spectroscopic imaging measurement during a short 17O2 inhalation. J Cereb Blood Flow Metab 24(8):840–848

    CAS  PubMed  Google Scholar 

  43. Zhu XH, Zhang N, Zhang Y, Zhang X, Ugurbil K, Chen W (2005) In vivo 17O NMR approaches for brain study at high field. NMR Biomed 18(2):83–103

    CAS  PubMed  Google Scholar 

  44. Atkinson IC, Sonstegaard R, Pliskin NH, Thulborn KR (2010) Vital signs and cognitive function are not affected by 23-sodium and 17-oxygen magnetic resonance imaging of the human brain at 9.4 T. J Magn Reson Imaging 32(1):82–87

    PubMed  Google Scholar 

  45. Atkinson IC, Thulborn KR (2010) Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. Neuroimage 51(2):723–733

    CAS  PubMed  Google Scholar 

  46. Hoffmann SH, Begovatz P, Nagel AM, Umathum R, Schommer K, Bachert P, Bock M (2011) A measurement setup for direct 17O MRI at 7 T. Magn Reson Med 66(4):1109–1115

    PubMed  Google Scholar 

  47. McCommis KS, He X, Abendschein DR, Gupte PM, Gropler RJ, Zheng J (2010) Cardiac 17O MRI: toward direct quantification of myocardial oxygen consumption. Magn Reson Med 63(6):1442–1447

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Gupta RK, Gupta P (1982) Direct observation of resolved resonances from intra- and extracellular sodium-23 ions in NMR studies of intact cells and tissues using dysprosium(III)tripolyphosphate as paramagnetic shift reagent. J Magn Reson (1969) 47:344–350

    CAS  Google Scholar 

  49. Winter PM, Bansal N (2001) TmDOTP(5-) as a (23)Na shift reagent for the subcutaneously implanted 9L gliosarcoma in rats. Magn Reson Med 45(3):436–442

    CAS  PubMed  Google Scholar 

  50. Kline RP, Wu EX, Petrylak DP, Szabolcs M, Alderson PO, Weisfeldt ML, Cannon P, Katz J (2000) Rapid in vivo monitoring of chemotherapeutic response using weighted sodium magnetic resonance imaging. Clin Cancer Res 6(6):2146–2156

    CAS  PubMed  Google Scholar 

  51. Borthakur A, Hancu I, Boada FE, Shen GX, Shapiro EM, Reddy R (1999) In vivo triple quantum filtered twisted projection sodium MRI of human articular cartilage. J Magn Reson 141(2):286–290

    CAS  PubMed  Google Scholar 

  52. Harris RK, Becker ED, Cabral de Menezes SM, Goodfellow R, Granger P (2002) NMR nomenclature: nuclear spin properties and conventions for chemical shifts. IUPAC Recommendations 2001. International Union of Pure and Applied Chemistry. Physical Chemistry Division. Commission on Molecular Structure and Spectroscopy. Magn Reson Chem 40(7):489–505

    CAS  Google Scholar 

  53. Hilal SK, Maudsley AA, Simon HE, Perman WH, Bonn J, Mawad ME, Silver AJ, Ganti SR, Sane P, Chien IC (1983) In vivo NMR imaging of tissue sodium in the intact cat before and after acute cerebral stroke. AJNR Am J Neuroradiol 4(3):245–249

    CAS  PubMed  Google Scholar 

  54. Hilal SK, Maudsley AA, Ra JB, Simon HE, Roschmann P, Wittekoek S, Cho ZH, Mun SK (1985) In vivo NMR imaging of sodium-23 in the human head. J Comput Assist Tomogr 9(1):1–7

    CAS  PubMed  Google Scholar 

  55. Hahn EL (1950) Spin echoes. Phys Rev 80(4):580

    Google Scholar 

  56. Berendsen HJ, Edzes HT (1973) The observation and general interpretation of sodium magnetic resonance in biological material. Ann N Y Acad Sci 204:459–485

    CAS  PubMed  Google Scholar 

  57. Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt KD (1986) FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson (1969) 67(2):258–266

    CAS  Google Scholar 

  58. Granot J (1986) Sodium imaging by gradient reversal. J Magn Reson (1969) 68(3):575–581

    CAS  Google Scholar 

  59. Kharrazian R, Jakob PM (2006) Dynamics of 23Na during completely balanced steady-state free precession. J Magn Reson 179(1):73–84

    CAS  PubMed  Google Scholar 

  60. Parrish TB, Fieno DS, Fitzgerald SW, Judd RM (1997) Theoretical basis for sodium and potassium MRI of the human heart at 1.5 T. Magn Reson Med 38(4):653–661

    CAS  PubMed  Google Scholar 

  61. Noll DC, Nishimura DG, Macovski A (1991) Homodyne detection in magnetic resonance imaging. IEEE Trans Med Imaging 10(2):154–163

    CAS  PubMed  Google Scholar 

  62. Cuppen J, van Est A (1987) Reducing MR imaging time by one-sided reconstruction. Magn Reson Imaging 5(6):526–527

    Google Scholar 

  63. Haacke EM, Lindskogj ED, Lin W (1991) A fast, iterative, partial-Fourier technique capable of local phase recovery. J Magn Reson (1969) 92(1):126–145

    CAS  Google Scholar 

  64. Hubbard PS (1970) Nonexponential nuclear magnetic relaxation by quadrupole interactions. J Chem Phys 53(3):985–987

    CAS  Google Scholar 

  65. Boada FE, Christensen JD, Huang-Hellinger FR, Reese TG, Thulborn KR (1994) Quantitative in vivo tissue sodium concentration maps: the effects of biexponential relaxation. Magn Reson Med 32(2):219–223

    CAS  PubMed  Google Scholar 

  66. Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242(5394):190–191

    CAS  Google Scholar 

  67. Glover GH, Pauly JM, Bradshaw KM (1992) Boron-11 imaging with a three-dimensional reconstruction method. J Magn Reson Imaging 2(1):47–52

    CAS  PubMed  Google Scholar 

  68. Rakhmanov EA, Saff EB, Zhou YM (1994) Minimal discrete energy on the sphere. Math Res Lett 1:647–662

    Google Scholar 

  69. Liao JR, Pauly JM, Brosnan TJ, Pelc NJ (1997) Reduction of motion artifacts in cine MRI using variable-density spiral trajectories. Magn Reson Med 37(4):569–575

    CAS  PubMed  Google Scholar 

  70. Pipe JG, Duerk JL (1995) Analytical resolution and noise characteristics of linearly reconstructed magnetic resonance data with arbitrary k-space sampling. Magn Reson Med 34(2):170–178

    CAS  PubMed  Google Scholar 

  71. Gurney PT, Hargreaves BA, Nishimura DG (2006) Design and analysis of a practical 3D cones trajectory. Magn Reson Med 55(3):575–582

    PubMed  Google Scholar 

  72. Rahmer J, Bornert P, Groen J, Bos C (2006) Three-dimensional radial ultrashort echo-time imaging with T 2 adapted sampling. Magn Reson Med 55(5):1075–1082

    PubMed  Google Scholar 

  73. O’Donnell M, Edelstein WA (1985) NMR imaging in the presence of magnetic field inhomogeneities and gradient field nonlinearities. Med Phys 12(1):20–26

    PubMed  Google Scholar 

  74. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297–301

    Google Scholar 

  75. O’Sullivan JD (1985) A fast sinc function gridding algorithm for Fourier inversion in computer tomography. IEEE Trans Med Imaging MI 4:200–207

    Google Scholar 

  76. Fessler JA, Sutton BP (2003) Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans Signal Proc 51(2):560–574

    Google Scholar 

  77. Beatty PJ, Nishimura DG, Pauly JM (2005) Rapid gridding reconstruction with a minimal oversampling ratio. IEEE Trans Med Imaging 24(6):799–808

    PubMed  Google Scholar 

  78. Atkinson IC, Liu G, Obeid N, Thulborn KR, Hwu WM (2013) Rapid computation of sodium bioscales using GPU-accelerated image reconstruction. Int J Imag Syst Technol 23:29–35

    Google Scholar 

  79. Oesterle C, Markl M, Strecker R, Kraemer FM, Hennig J (1999) Spiral reconstruction by regridding to a large rectilinear matrix: a practical solution for routine systems. J Magn Reson Imaging 10(1):84–92

    CAS  PubMed  Google Scholar 

  80. Nuttal AH (1981) Some windows with very good sidelobe behavior. IEEE Trans Acoust Speech 29(1):84–91

    Google Scholar 

  81. Jackson JI, Meyer CH, Nishimura DG, Macovski A (1991) Selection of a convolution function for Fourier inversion using gridding. IEEE Trans Med Imaging 10(3):473–478

    CAS  PubMed  Google Scholar 

  82. Boada FE, Gillen JS, Shen GX, Chang SY, Thulborn KR (1997) Fast three dimensional sodium imaging. Magn Reson Med 37(5):706–715

    CAS  PubMed  Google Scholar 

  83. Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 62(6):1565–1573

    PubMed  Google Scholar 

  84. Irarrazabal P, Nishimura DG (1995) Fast three dimensional magnetic resonance imaging. Magn Reson Med 33(5):656–662

    CAS  PubMed  Google Scholar 

  85. Peters DC, Derbyshire JA, McVeigh ER (2003) Centering the projection reconstruction trajectory: reducing gradient delay errors. Magn Reson Med 50(1):1–6

    PubMed Central  PubMed  Google Scholar 

  86. Atkinson IC, Lu A, Thulborn KR (2009) Characterization and correction of system delays and eddy currents for MR imaging with ultrashort echo-time and time-varying gradients. Magn Reson Med 62(2):532–537

    PubMed  Google Scholar 

  87. Lu A, Atkinson IC, Vaughn JT, Thulborn KR (2011) Impact of gradient timing error on the tissue sodium concentration bioscale measured using flexible twisted projection imaging. J Magn Reson 213(1):176–181

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Barger AV, Block WF, Toropov Y, Grist TM, Mistretta CA (2002) Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory. Magn Reson Med 48(2):297–305

    PubMed  Google Scholar 

  89. Lu A, Atkinson IC, Claiborne TC, Damen FC, Thulborn KR (2010) Quantitative sodium imaging with a flexible twisted projection pulse sequence. Magn Reson Med 63(6):1583–1593

    PubMed Central  PubMed  Google Scholar 

  90. Mareci TH, Brooker HR (1991) Essential considerations for spectral localization using indirect gradient encoding of spatial information. J Magn Reson (1969) 92(2):229–246

    Google Scholar 

  91. Heiler PM, Langhauser FL, Wetterling F, Ansar S, Grudzenski S, Konstandin S, Fatar M, Meairs S, Schad LR (2011) Chemical shift sodium imaging in a mouse model of thromboembolic stroke at 9.4 T. J Magn Reson Imaging 34(4):935–940

    PubMed  Google Scholar 

  92. Stobbe RW, Beaulieu C (2008) Advantage of sampling density weighted apodization over postacquisition filtering apodization for sodium MRI of the human brain. Magn Reson Med 60(4):981–986

    PubMed  Google Scholar 

  93. Konstandin S, Nagel AM (2013) Performance of sampling density-weighted and postfiltered density-adapted projection reconstruction in sodium magnetic resonance imaging. Magn Reson Med 69(2):495–502

    CAS  PubMed  Google Scholar 

  94. Harris FJ (1978) On the use of windows for harmonic analysis with the discrete Fourier transform. Proc IEEE 66(1):51–83

    Google Scholar 

  95. Boada FE, Shen GX, Chang SY, Thulborn KR (1997) Spectrally weighted twisted projection imaging: reducing T 2 signal attenuation effects in fast three-dimensional sodium imaging. Magn Reson Med 38(6):1022–1028

    CAS  PubMed  Google Scholar 

  96. Bergin CJ, Pauly JM, Macovski A (1991) Lung parenchyma: projection reconstruction MR imaging. Radiology 179(3):777–781

    CAS  PubMed  Google Scholar 

  97. Jackson JI, Nishimura DG, Macovski A (1992) Twisting radial lines with application to robust magnetic resonance imaging of irregular flow. Magn Reson Med 25(1):128–139

    CAS  PubMed  Google Scholar 

  98. Konstandin S, Nagel AM, Heiler PM, Schad LR (2011) Two-dimensional radial acquisition technique with density adaption in sodium MRI. Magn Reson Med 65(4):1090–1096

    PubMed  Google Scholar 

  99. Conolly S, Nishimura D, Macovski A, Glover G (1988) Variable-rate selective excitation. J Magn Reson (1969) 78(3):440–458

    Google Scholar 

  100. Song J, Liu Y, Gewalt SL, Cofer G, Johnson GA, Liu QH (2009) Least-square NUFFT methods applied to 2-D and 3-D radially encoded MR image reconstruction. IEEE Trans Biomed Eng 56(4):1134–1142

    PubMed Central  PubMed  Google Scholar 

  101. Qian Y, Boada FE (2008) Acquisition-weighted stack of spirals for fast high-resolution three-dimensional ultra-short echo time MR imaging. Magn Reson Med 60(1):135–145

    PubMed  Google Scholar 

  102. Qian Y, Zhao T, Zheng H, Weimer J, Boada FE (2012) High-resolution sodium imaging of human brain at 7 T. Magn Reson Med 68(1):227–233

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Staroswiecki E, Bangerter NK, Gurney PT, Grafendorfer T, Gold GE, Hargreaves BA (2010) In vivo sodium imaging of human patellar cartilage with a 3D cones sequence at 3 T and 7 T. J Magn Reson Imaging 32(2):446–451

    PubMed Central  PubMed  Google Scholar 

  104. Watts A, Stobbe RW, Beaulieu C (2011) Signal-to-noise optimization for sodium MRI of the human knee at 4.7 Tesla using steady state. Magn Reson Med 66(3):697–705

    PubMed  Google Scholar 

  105. Nagel AM, Weber MA, Wolf MB, Semmler W (2012) 3D Density-adapted projection reconstruction 23Na-MRI with anisotropic resolution and field-of-view. In: Proceedings of the 20th scientific meeting, International Society for Magnetic Resonance in Medicine, Melbourne, p 2282

  106. Larson PZ, Gurney PT, Nishimura DG (2008) Anisotropic field-of-views in radial imaging. IEEE Trans Med Imaging 27(1):47–57

    CAS  PubMed  Google Scholar 

  107. Scheffler K, Hennig J (1998) Reduced circular field-of-view imaging. Magn Reson Med 40(3):474–480

    CAS  PubMed  Google Scholar 

  108. Bansal N, Germann MJ, Seshan V, Shires GT 3rd, Malloy CR, Sherry AD (1993) Thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) as a 23Na shift reagent for the in vivo rat liver. Biochemistry 32(21):5638–5643

    CAS  PubMed  Google Scholar 

  109. Naritomi H, Kanashiro M, Sasaki M, Kuribayashi Y, Sawada T (1987) In vivo measurements of intra- and extracellular Na+ and water in the brain and muscle by nuclear magnetic resonance spectroscopy with shift reagent. Biophys J 52(4):611–616

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Bansal N, Germann MJ, Lazar I, Malloy CR, Sherry AD (1992) In vivo Na-23 MR imaging and spectroscopy of rat brain during TmDOTP5-infusion. J Magn Reson Imaging 2(4):385–391

    CAS  PubMed  Google Scholar 

  111. Stobbe R, Beaulieu C (2005) In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation. Magn Reson Med 54(5):1305–1310

    CAS  PubMed  Google Scholar 

  112. Madelin G, Lee JS, Inati S, Jerschow A, Regatte RR (2010) Sodium inversion recovery MRI of the knee joint in vivo at 7T. J Magn Reson 207(1):42–52

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Slichter CP (1989) Principles of magnetic resonance. Springer, Berlin

    Google Scholar 

  114. Bodenhausen G (1981) Multiple-quantum NMR. Prog Nucl Mag Res Spectrosc 14:137–173

    Google Scholar 

  115. Pekar J, Renshaw PF, Leigh JS (1987) Selective detection of intracellular sodium by coherence-transfer NMR. J Magn Reson (1969) 72(1):159–161

    CAS  Google Scholar 

  116. Jaccard G, Wimperis S, Bodenhausen G (1986) Multiple-quantum NMR spectroscopy of S = 3/2 spins in isotropic phase: a new probe for multiexponential relaxation. J Chem Phys 85(11):6282–6293

    CAS  Google Scholar 

  117. Chung CW, Wimperis S (1990) Optimum detection of spin-3/2 biexponential relaxation using multiple-quantum filtration techniques. J Magn Reson (1969) 88(2):440–447

    CAS  Google Scholar 

  118. Wimperis S, Cole P, Styles P (1992) Triple-quantum-filtration NMR imaging of 200 mM sodium at 1.9 Tesla. J Magn Reson (1969) 98(3):628–636

    CAS  Google Scholar 

  119. Hancu I, Boada FE, Shen GX (1999) Three-dimensional triple-quantum-filtered 23Na imaging of in vivo human brain. Magn Reson Med 42(6):1146–1154

    CAS  PubMed  Google Scholar 

  120. Maudsley AA, Wokaun A, Ernst RR (1978) Coherence transfer echoes. Chem Phys Lett 55(1):9–14

    CAS  Google Scholar 

  121. Wimperis S, Wood B (1991) Triple-quantum sodium imaging. J Magn Reson (1969) 95(2):428–436

    CAS  Google Scholar 

  122. Keltner JR, Wong ST, Roos MS (1994) Three-dimensional triple-quantum-filtered imaging of 0.012 and 0.024 M sodium-23 using short repetition times. J Magn Reson B 104(3):219–229

    CAS  PubMed  Google Scholar 

  123. Zhu JM, Smith ICP (1995) Selection of coherence transfer pathways by pulsed-field gradients in NMR spectroscopy. Concept Magn Res 7(4):281–291

    CAS  Google Scholar 

  124. Tanase C, Boada FE (2005) Triple-quantum-filtered imaging of sodium in presence of B 0 inhomogeneities. J Magn Reson 174(2):270–278

    CAS  PubMed  Google Scholar 

  125. Matthies C, Nagel AM, Schad LR, Bachert P (2010) Reduction of B 0 inhomogeneity effects in triple-quantum-filtered sodium imaging. J Magn Reson 202(2):239–244

    CAS  PubMed  Google Scholar 

  126. Fleysher L, Oesingmann N, Inglese M (2010) B 0 inhomogeneity-insensitive triple-quantum-filtered sodium imaging using a 12-step phase-cycling scheme. NMR Biomed 23(10):1191–1198

    PubMed Central  PubMed  Google Scholar 

  127. Tsang A, Stobbe RW, Beaulieu C (2013) Evaluation of B-inhomogeneity correction for triple-quantum-filtered sodium MRI of the human brain at 4.7T. J Magn Reson 230C:134–144

    Google Scholar 

  128. Fiege DP, Romanzetti S, Tse DH, Brenner D, Celik A, Felder J, Jon Shah N (2013) B 0 insensitive multiple-quantum resolved sodium imaging using a phase-rotation scheme. J Magn Reson 228:32–36

    CAS  PubMed  Google Scholar 

  129. Fiege DP, Romanzetti S, Mirkes CC, Brenner D, Shah NJ (2013) Simultaneous single-quantum and triple-quantum-filtered MRI of 23Na (SISTINA). Magn Reson Med 69(6):1691–1696

    CAS  PubMed  Google Scholar 

  130. Benkhedah N, Bachert P, Semmler W, Nagel AM (2012) Three-dimensional biexponential weighted 23Na imaging of the human brain with higher SNR and shorter acquisition time. Magn Reson Med. doi:10.1002/mrm.24516

    PubMed  Google Scholar 

  131. Atkinson IC, Renteria L, Burd H, Pliskin NH, Thulborn KR (2007) Safety of human MRI at static fields above the FDA 8 T guideline: sodium imaging at 9.4 T does not affect vital signs or cognitive ability. J Magn Reson Imaging 26(5):1222–1227

    PubMed  Google Scholar 

  132. Nagel AM, Schmitter S, Bock M, Moser E, Semmler W, Schad LR (2009) Parameter optimization for 7T 23Na-MRI. In: Proceedings of the 17th scientific meeting, International Society for Magnetic Resonance in Medicine, Honolulu, p 2465

  133. Hoult DI, Richards RE (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson (1969) 24(1):71–85

    Google Scholar 

  134. Lu M, Zhang Y, Ugurbil K, Chen W, Zhu XH (2013) In vitro and in vivo studies of (17) O NMR sensitivity at 9.4 and 16.4 T. Magn Reson Med 69(6):1523–1527

    CAS  PubMed  Google Scholar 

  135. Qian Y, Zhao T, Wiggins GC, Wald LL, Zheng H, Weimer J, Boada FE (2012) Sodium imaging of human brain at 7 T with 15-channel array coil. Magn Reson Med 68(6):1807–1814

    CAS  PubMed  Google Scholar 

  136. Idiyatullin D, Corum C, Park JY, Garwood M (2006) Fast and quiet MRI using a swept radiofrequency. J Magn Reson 181(2):342–349

    CAS  PubMed  Google Scholar 

  137. Idiyatullin D, Suddarth S, Corum CA, Adriany G, Garwood M (2012) Continuous SWIFT. J Magn Reson 220:26–31

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Nagel AM, Meise FM, Weber MA, Jurkat-Rott K, Lehmann-Horn F, Bock M, Semmler W, Umathum R (2012) Chlorine 35Cl magnetic resonance imaging of the human brain and muscle. In: Proceedings of the 20th scientific meeting, International Society for Magnetic Resonance in Medicine, Melbourne, p 1699

  139. Umathum R, Roesler MB, Nagel AM (2013) In vivo potassium (39K) magnetic resonance imaging of human muscle and brain. Radiology. doi:10.1148/radiol.13130757

    PubMed  Google Scholar 

  140. Atkinson IC, Claiborne TC, Thulborn KR (2013) Feasibility of 39-potassium MR imaging of a human brain at 9.4 Tesla. Magn Reson Med. doi:10.1002/mrm.24821

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin M. Nagel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konstandin, S., Nagel, A.M. Measurement techniques for magnetic resonance imaging of fast relaxing nuclei. Magn Reson Mater Phy 27, 5–19 (2014). https://doi.org/10.1007/s10334-013-0394-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-013-0394-3

Keywords

Navigation