Skip to main content
Log in

Quantification in magnetic resonance spectroscopy based on semi-parametric approaches

  • Review Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Magnetic resonance spectroscopy (MRS) is a value-added modality to magnetic resonance imaging (MRI) that is often used in diagnosis, treatment and progression monitoring, as well as in non-destructive, non-invasive studies of disease states in humans and model systems in animals. The availability of high magnetic field strengths and use of hyperpolarized nuclei, combined with the possibility of acquiring spectra at very short echo-time, have dramatically increased the potential of MRS. For the last two decades, a challenge has been to quantify short echo-time proton spectra that exhibit many metabolites, and to estimate their concentrations. Quantification of such spectra is challenging. Because the model function describing the acquired MRS signal is incomplete, semi-parametric techniques are required for estimation of the wanted metabolite concentrations. The semi-parametric approaches, QUEST, AQSES, TARQUIN, LCModel and SiToolsFITT, are reviewed and discussed according to handling of macromolecule signal and unknown decay of the metabolite signal (lineshape). Estimation of noise-related errors on model parameters and compromise used in real-world applications are detailed, with emphasis on the bias-variance trade-off. Applications of the semi-parametric methods QUEST and AQSES to quantification of MRS, HRMAS and MRSI data are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMARES:

Advanced Method for Accurate, Robust and Efficient Spectral fitting.

AQSES:

Automated Quantification of Short Echo Time MRS Signals

CRB:

Cramér–Rao Bound

LCModel:

Linear Combination of Models

NMR-SCOPE:

NMR Spectra Calculation using OPErators

MIDAS:

Metabolite Imaging and Data Analysis System

QUEST:

QUantification based on QUantum ESTimation

SVD:

Singular Value Decomposition

VARPRO:

VARiable PROjection

References

  1. Bottomley PA, Weiss RG (1998) Noninvasive MRS detection of localized creatine depletion in non-viable, infarcted myocardium. Lancet 351:714–718

    PubMed  CAS  Google Scholar 

  2. Vion-Dury J, Salvan AM, Cozzone PJ (1999) Proton magnetic resonance spectrometry for noninvasive exploration of human brain metabolism: current and future clinical applications. Revue Neurol 155:903–926

    CAS  Google Scholar 

  3. Antel SB, Li LM, Cendes F, Collins DL, Kearney RE, Shinghal R, Arnold DL (2002) Predicting surgical outcome in temporal lobe epilepsy patients using MRI and MRSI. Neurology 2:1505–1511

    Google Scholar 

  4. Braun KP, Vandertop WP, Gooskens RHJM, Tulleken KAF, Nicolay K (2000) NMR spectroscopic evaluation of cerebral metabolism in hydrocephalus: a review. Neurol Res 22:51–64

    PubMed  CAS  Google Scholar 

  5. Clarke CE, Lowry M (2001) Systematic review of proton magnetic resonance spectroscopy of the striatum in parkinsonian syndromes. Eur J Neurol 8:573–577

    PubMed  CAS  Google Scholar 

  6. Griffiths JR, Glickson JD (2000) Monitoring pharmacokinetics of anticancer drugs: non-invasive investigation using magnetic resonance spectroscopy. Adv Drug Deliv Rev 41:75–89

    PubMed  CAS  Google Scholar 

  7. Graham GD, Hwang JH, Rothman DL, Prichard JW (2001) Spectroscopic assessment of alterations in macromolecule and small-molecule metabolites in human brain after stroke. Stroke 32:2797–2802

    PubMed  CAS  Google Scholar 

  8. Leclerc X, Huisman TAGM, Sorensen AG (2002) The potential of proton magnetic resonance spectroscopy (H-1-MRS) in the diagnosis and management of patients with brain tumors. Curr Opin Oncol 14:292–298

    PubMed  Google Scholar 

  9. Lyoo K, Renshaw PF (2002) Magnetic resonance spectroscopy: current and future applications in psychiatric research. Biol Psychiatry 51:195–207

    PubMed  Google Scholar 

  10. Kurhanewicz J, Swanson MG, Nelson SJ, Vigneron DB (2002) Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging 16:451–463

    PubMed Central  PubMed  Google Scholar 

  11. Kreis R, Hofmann L, Kuhlmann B, Boesch C, Bossi E, Huppi PS (2002) Brain metabolite composition during early human brain development as measured by quantitative in vivo H-1 magnetic resonance spectroscopy. Magn Reson Med 48(6):949–958

    PubMed  CAS  Google Scholar 

  12. Chan AA, Lau A, Pirzkall A, Chan SM, Verheij LJ, Larson D, McDermott MW, Dillon WP, Nelson SJ (2004) Proton MRSI in the evaluation of patients undergoing gamma knife surgery for Grade IV glioma. J Neurosurg 101(3):467–475

    PubMed  Google Scholar 

  13. Penet MF, Viola A, Confort-Gouny S, Le Fur Y, Duhamel G, Kober F, Ibarrola D, Izquierdo M, Coltel N, Gharib B, Grau GE, Cozzone PJ (2005) Imaging experimental cerebral malaria in vivo: significant role of ischemic brain edema. J Neurosci 25:7352–7358

    PubMed  CAS  Google Scholar 

  14. Barker PB, Lin DDM (2006) In vivo proton MR spectroscopy of the human brain. Prog Nucl Magn Reson Spectrosc 49:99–128

    CAS  Google Scholar 

  15. Rosen Y, Lenkinski RE (2007) Recent advances in magnetic resonance neurospectroscopy. Neurotherapeutics 4:330–345

    PubMed  CAS  Google Scholar 

  16. Boesch C (2009) Human muscle studies by magnetic resonance spectroscopy. Wiley, London

    Google Scholar 

  17. Soares DP, Law M (2009) Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol 64:12–21

    PubMed  CAS  Google Scholar 

  18. Glunde K, Artemov D, Penet M-F, Jacobs MA, Bhujwalla ZM (2010) Magnetic resonance spectroscopy in metabolic and molecular imaging and diagnosis of cancer. Chem Rev 110:3043–3059

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Sinclair AJ, Viant MR, Ball AK, Burdon MA, Walker EA, Stewart PM, Rauz S, Young SP (2010) NMR-based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases—a diagnostic tool? NMR Biomed 23:123–132

    PubMed  CAS  Google Scholar 

  20. Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, De Berardinis RJ, Green GG, Leach MO, Rajan SS, Rizi RR, Ross BD, Warren WS, Malloy CR (2011) Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 13:81–97

    PubMed Central  PubMed  Google Scholar 

  21. Scheidegger O, Wingeier K, Stefan D, Graveron-Demilly D, van Ormondt D, Wiest R, Slotboom J (2012) Optimized quantitative magnetic resonance spectroscopy (qMRS) for clinical routine. Magn Reson Med. doi:10.1002/mrm.24455

  22. Lin A, Tran T, Bluml S, Merugumala S, Liao H-J, Ross BD (2012) Guidelines for acquiring and reporting clinical neurospectroscopy. Semin Neurol 32(4):432–453

    PubMed  Google Scholar 

  23. Mlynarik V, Cudalbu C, Xin L, Gruetter R (2008) 1H NMR spectroscopy of rat brain in vivo at 14.1 Tesla: improvements in quantification of the neurochemical profile. J Magn Reson 194(2):163–168

    PubMed  CAS  Google Scholar 

  24. Coune PG, Craveiro M, Gaugler MN, Mlynarik V, Schneider BL, Aebischer P, Gruetter R (2013) An in vivo ultrahigh field 14.1 T 1H-MRS study on 6-OHDA and a-synuclein-based rat models of Parkinson’s disease: GABA as an early disease marker. NMR Biomed 26:43–50

    PubMed  CAS  Google Scholar 

  25. Hong ST, Pohmann R (2013) Quantification issues of in vivo 1H NMR spectroscopy of the rat brain investigated at 16.4 T. NMR Biomed 26:74–82

    PubMed  CAS  Google Scholar 

  26. Kosorok MR (2009) What’s so special about semiparametric methods? Indian J Stat 71-A(Part 2):331–353

    Google Scholar 

  27. Young K, Soher BJ, Maudsley AA (1998) Automated spectral analysis II: application of wavelet shrinkage for characterization of non-parameterized signals. Magn Reson Med 40:816–821

    PubMed  CAS  Google Scholar 

  28. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    PubMed  CAS  Google Scholar 

  29. Slotboom J, Boesch C, Kreis R (1998) Versatile frequency domain fitting using time domain models and prior knowledge. Magn Reson Med 39:899–911

    PubMed  CAS  Google Scholar 

  30. Ratiney H, Sdika M, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D (2005) Time-domain semi-parametric estimation based on a metabolite basis set. NMR Biomed 18:1–13

    PubMed  CAS  Google Scholar 

  31. Ratiney H, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D (2004) Time-domain quantitation of 1H short echo-time signals: background accommodation. Magn Reson Mater Phy 16:284–296

    CAS  Google Scholar 

  32. Poullet JB, Sima DM, Simonetti AW, de Neuter B, Vanhamme L, Lemmerling P, Van Huffel S (2007) An automated quantitation of short echo time MRS spectra in an open source software environment: AQSES. NMR Biomed 20(5):493–504

    PubMed  CAS  Google Scholar 

  33. Wilson M, Reynolds G, Kauppinen RA, Arvanitis TN, Peet AC (2011) A constrained least-squares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data. Magn Reson Med 65(1):1–12

    PubMed  CAS  Google Scholar 

  34. Poullet JB, Sima DM, Van Huffel S (2008) MRS signal quantitation: a review of time- and frequency-domain methods. J Magn Reson 195(2):134–144

    PubMed  CAS  Google Scholar 

  35. Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153

    PubMed  CAS  Google Scholar 

  36. Rabeson H (2008) Quantification semi-paramétrique de signaux de Spectrométrie de Résonance Magnétique, acquis ex vivo et in vivo. PhD thesis, Université Claude Bernard, Lyon1, France

  37. van der Veen JWC, de Beer R, Luyten PR, van Ormondt D (1988) Accurate quantification of in vivo 31 P NMR signals using the variable projection method and prior knowledge. Magn Reson Med 6:92–98

    PubMed  Google Scholar 

  38. Vanhamme L, van den Boogaart A, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35–43

    PubMed  CAS  Google Scholar 

  39. Vanhamme L, Sundin T, Van Huffel S, Van Hecke P (2001) Spectroscopic MRS data quantitation: a review of time domain methods. NMR Biomed 14:233–246

    PubMed  CAS  Google Scholar 

  40. Higinbotham I, Marshall J (2001) NMR lineshapes and lineshape fitting. Annu Rep NMR Spectrosc 43:59–120

    CAS  Google Scholar 

  41. Pijnappel WWF, van den Boogaart A, de Beer R, van Ormondt D (1992) SVD-based quantification of magnetic resonance signals. J Magn Reson 97:122–134

    Google Scholar 

  42. Coenradie Y, de Beer R, van Ormondt D, Cavassila S, Ratiney H, Graveron-Demilly D (2002) Background-signal parametrization in in vivo MR spectroscopy. Magn Reson Mater Phy 15:369

    Google Scholar 

  43. Coenradie Y, de Beer R, van Ormondt D, Ratiney H, Cavassila S, Graveron-Demilly D (2002) Background-signal parametrization in in vivo MR spectroscopy. In: ProRISC, IEEE Benelux. Veldhoven, The Netherlands, pp 432–437

  44. Smith SA, Levante TO, Meier BH, Ernst RR (1994) Computer simulations in magnetic resonance. An object oriented programming approach. J Magn Reson A106:75–105

    Google Scholar 

  45. Graveron-Demilly D, Diop A, Briguet A, Fenet B (1993) Product-operator algebra for strongly coupled spin systems. J Magn Reson A101:233–239

    Google Scholar 

  46. Starcuk Z, Starcukova J, Strbak O, Graveron-Demilly D (2009) Simulation of coupled-spin systems in the steady-state free-precession acquisition mode for fast magnetic resonance (MR) spectroscopic imaging. Meas Sci Technol 20:104033

    Google Scholar 

  47. Soher BJ, Young K, Bernstein A, Aygula Z, Maudsley AA (2007) GAVA: spectral simulation for in vivo MRS applications. J Magn Reson 185:291–299

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Barkhuijsen H, de Beer R, van Ormondt D (1987) Improved algorithm for noniterative time-domain model fitting to exponentially damped magnetic resonance signals. J Magn Reson 73:553–557

    CAS  Google Scholar 

  49. Laudadio T, Mastronardi N, Vanhamme L, Van Hecke P, Van Huffel S (2002) Improved lanczos algorithms for blackbox MRS data quantitation. J Magn Reson 157:292–297

    PubMed  CAS  Google Scholar 

  50. de Graaf AA, van Dijk JE, Bovée WMMJ (1990) Quantification improvement by converting lineshapes to the Lorentzian type. Magn Reson Med 13:343–357

    PubMed  Google Scholar 

  51. Bartha R, Drost DJ, Menon RS, Williamson PC (2000) Spectroscopic lineshape correction by QUECC: combined quality deconvolution and eddy current correction. Magn Reson Med 44(4):641–645

    PubMed  CAS  Google Scholar 

  52. Reynolds G, Wilson M, Peet A, Arvanitis TN (2006) An algorithm for the automated quantitation of metabolites in in vitro NMR signals. Magn Reson Med 56:1211–1219

    PubMed  CAS  Google Scholar 

  53. Chong DGQ, Kreis R, Bolliger C, Boesch C, Slotboom J (2011) Two-dimensional linear combination model fitting of magnetic resonance spectra to define the macromolecule baseline using FiTAID, a Fitting Tool for Arrays of Interrelated Datasets. Magn Reson Mater Phy 24:147–164

    Google Scholar 

  54. Maudsley AA, Darkazanli A, Alger JR, Hall LO, Schuff N, Studholme C, Frew A, Goldgof D, Pagare R, Rousseau F, Sivasankaran K, Soher BJ, Weber P, Young K, Yu Y, Yuhua G (2006) Comprehensive processing, display, and analysis for in vivo MR spectroscopic imaging. NMR Biomed 19:492–503

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D (2000) Cramér–Rao bound expressions for parametric estimation of overlapping spectral components. Influence of prior knowledge. J Magn Reson 143:311–320

    PubMed  CAS  Google Scholar 

  56. Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D (2001) Cramér–Rao bounds: a tool for quantitation objectives. NMR Biomed 14:278–283

    PubMed  CAS  Google Scholar 

  57. Cavassila S, van Ormondt D, Graveron-Demilly D (2001) Cramér–Rao bound analysis of spectroscopic signal processing methods, chapter 22. Marcel Dekker. In: Yan H (ed) Signal processing for magnetic resonance imaging and spectroscopy

  58. Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, Graveron-Demilly D (2001) Java-based graphical user interface for the mrui quantitation package. Magn Reson Mater Phy 12:141–152

    CAS  Google Scholar 

  59. Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D (2001) Java-based graphical user interface for MRUI, a software package for quantitation of in vivo medical magnetic resonance spectroscopy signals. Comput Biol Med 31:269–286

    PubMed  CAS  Google Scholar 

  60. Stefan D, Di Cesare F, Andrasescu A, Popa E, Lazariev A, E.Vescovo , Strbak O, Williams S, Starcuk Z, Cabanas M, van Ormondt D, Graveron-Demilly D (2009) Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Meas Sci Technol 20:104035

  61. Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153

    PubMed  CAS  Google Scholar 

  62. Ratiney H, Mitri F, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D (2002) QUEST: time-domain quantitation with advanced prior knowledge. Magn Reson Mater Phy 15:373

    Google Scholar 

  63. Maudsley AA (1995) Spectral lineshape determination by self-deconvolution. J Magn Reson B 106:47–57

    PubMed  CAS  Google Scholar 

  64. Sima DM, Osorio-Garcia MI, Poullet J-B, Suvichakorn A, Antoine J-P, Van Huffel S, van Ormondt D (2009) Lineshape estimation for magnetic resonance spectroscopy (MRS) signals: self-deconvolution revisited. Meas Sci Technol 20:104031

    Google Scholar 

  65. Popa E (2010) Algorithms for Handling Arbitrary Lineshape Distortions in Magnetic Resonance Spectroscopy and Spectroscopic Imaging. PhD thesis, Université Claude Bernard-Lyon 1

  66. Popa E, Karras DA, Mertzios BG, Sima DM, de Beer R, van Ormondt D, Graveron-Demilly D (2011) Handling unknown lineshape without searching in function space. Application to in vivo metabolite quantitation. Meas Sci Technol 22:114014

    Google Scholar 

  67. van Ormondt D, de Beer R, Sima DM, Graveron-Demilly D (2011) New approach to semi-parametric estimation for in vivo magnetic resonance spectroscopy. In: ProRISC, ICT.OPEN, pp 45–50, Veldhoven, The Netherlands

  68. van Ormondt D, de Beer R, van der Veen JWC, Sima DM, Graveron-Demilly D (2012) Bias-variance trade-off in in vivo metabolite quantitation. In: Proceedings RISC, ICT.OPEN, Rotterdam, The Netherlands, p 10

  69. Graveron-Demilly D (2002) Spectroscopy beyond NAA, time domain processing. Honolulu, Hawaii, USA, pp 18–24. In: International society of magnetic resonance in medicine, 10th scientific meeting and exhibition

  70. Ratiney H, Mitri F, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D (2002) Time-domain quantitation based on a metabolite basis set in magnetic resonance spectroscopy. In: ProRISC, IEEE Benelux. Veldhoven, The Netherlands, pp 432–437

  71. Ratiney H, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D (2003) Time-domain quantitation with a metabolite basis set, p 1161, Toronto, Canada. In: International society of magnetic resonance in medicine, 11th scientific meeting and exhibition

  72. Soher BJ, Young K, Maudsley AA (2001) Representation of strong baseline contributions in 1H MR spectra. Magn Reson Med 45:966–972

    PubMed  CAS  Google Scholar 

  73. Hofmann L, Slotboom J, Boesch C, Kreis R (2001) Characterization of the macromolecule baseline in localized 1H-MR spectra of human brain. Magn Reson Med 46:855–863

    PubMed  CAS  Google Scholar 

  74. Kunz N, Cudalbu C, Mlynarik V, Huppi PS, Sizonenko SV, Gruetter R (2010) Diffusion-weighted spectroscopy: a novel approach to determine macromolecule resonances in short echo-time 1H-MRS. Magn Reson Med 64:939–946

    PubMed  CAS  Google Scholar 

  75. Knight-Scott J (1999) Application of multiple inversion recovery for suppression of macromolecule resonances in short echo time (1)H NMR spectroscopy of human brain. J Magn Reson 140:228–234

    PubMed  CAS  Google Scholar 

  76. Ratiney H, Capobianco E, Sdika M, Rabeson H, Cudalbu C, Cavassila S, de Beer R, van Ormondt D, Graveron-Demilly D (2005) Semiparametric estimation in in vivo MR spectroscopy. In: ProRISC, IEEE Benelux, pp 658–667, Veldhoven, The Netherlands

  77. Steinberg J, Soher BJ (2012) Improved initial value estimation for short echo time magnetic resonance spectroscopy spectral analysis using short T2 signal attenuation. Magn Reson Med 67(5):1195–1202

    PubMed Central  PubMed  Google Scholar 

  78. Ratiney H, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D (2003) Time-domain quantitation of 1H short echo-time signals: background accommodation, p 328, Rotterdam, The Netherlands. In: 20th European society of magnetic resonance in medicine and biology. Scientific meeting and exhibition

  79. Ratiney H, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D (2003) Semiparametric estimation for metabolomics. In: ProRISC, IEEE Benelux, pp 418–426, Veldhoven, The Netherlands

  80. Cudalbu C, Cavassila S, Rabeson H, van Ormondt D, Graveron-Demilly D (2008) Influence of measured and simulated basis sets on metabolite concentration estimates. NMR Biomed 21:627–636

    PubMed  CAS  Google Scholar 

  81. Gottschalk M, Lamalle L, Segebarth C (2008) Short-TE localised H-1 MRS of the human brain at 3T: quantification of the metabolite signals using two approaches to account for macromolecular signal contributions. NMR Biomed 21:507–517

    PubMed  CAS  Google Scholar 

  82. Hofmann L, Slotboom J, Jung B, Maloca P, Boesch C, Kreis R (2002) Quantitative 1H-magnetic resonance spectroscopy of human brain: influence of composition and parameterization of the basis set in linear combination model-fitting. Magn Reson Med 48:440–453

    PubMed  CAS  Google Scholar 

  83. Seeger U, Klose U, Mader I, Grodd W, Nägele T (2003) Parameterized evaluation of macromolecules and lipids in proton MR spectroscopy of brain diseases. Magn Reson Med 49:19–28

    PubMed  CAS  Google Scholar 

  84. Popa E, Rabeson H, van Ormondt D, Graveron-Demilly D (2007) Lineshape accommodation in quantitation of magnetic resonance spectroscopy signals. In: ProRISC, IEEE Benelux, pp 250–253, Veldhoven, The Netherlands. STW. http://www.stw.nl/Programmas/Prorisc/Proceedings.htm

  85. Popa E, Capobianco E, de Beer R, van Ormondt D, Graveron-Demilly D (2008) Lineshape estimation in in vivo MR spectroscopy without using a reference signal. In: IEEE international workshop on imaging systems and techniques, IST 2008, pp 315–320, Chania, Greece

  86. Popa E, Capobianco E, de Beer R, van Ormondt D, Graveron-Demilly D (2008) Lineshape estimation in in vivo MR spectroscopy without using a reference signal. In ProRISC, IEEE Benelux, pp 342–347, Veldhoven, The Netherlands, pp 27–28. STW. http://www.stw.nl/Programmas/Prorisc/Proceedings.htm

  87. Popa E, Rabeson H, van Ormondt D, Graveron-Demilly D (2008) Lineshape accommodation in quantitation of magnetic resonance spectroscopy signals. In: Proceedings of the ISMRM, Toronto, CA. Abstract # 1626

  88. Popa E, Capobianco E, de Beer R, van Ormondt D, Graveron-Demilly D (2009) In vivo quantitation of metabolites with an incomplete model function. Meas Sci Technol 20:104032

    Google Scholar 

  89. Popa E, van Ormondt D, Graveron-Demilly D (2009) Lineshape estimation improvement using locally weighted regression and smoothing scatterplots. In: Electronic Poster, Antalya, TK. 26th annual meeting of the European society for magnetic resonance medicine and biology, ESMRMB

  90. Popa E, Graveron-Demilly D, Capobianco E, de Beer R, van Ormondt D (2009) New Lineshape Estimation for in vivo MR spectroscopy. In: ProRISC, IEEE Benelux, pp 255–262, Veldhoven, The Netherlands, STW. Proceedings on CDROM

  91. Cleveland W (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74: 829–836

    Google Scholar 

  92. Cleveland W, Devlin S (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610

    Google Scholar 

  93. Cleveland W, Grosse E, Shyu M (1992) Statistical models in S. Chapman & Hall, London

  94. Poullet JB, Sima DM, Van Huffel S, Van Hecke P (2007) Frequency-selective quantitation of short echo-time 1H magnetic resonance spectra. J Magn Reson 186(2):293–304

    PubMed  CAS  Google Scholar 

  95. Osorio-Garcia M.I, Sima D.M, Poullet J-B, Van Huffel S, van Ormondt D (2008) Improvement of lineshape estimation for MRS signals. In: IEEE international workshop on imaging systems and techniques, IST 2008, pp 326–329, Chania, Greece

  96. Osorio-Garcia MI, Sima DM, Nielsen FU, Dresselears T, VanLeuven F, Himmelreich U, Van Huffel S (2011) Quantification of in vivo 1H magnetic resonance spectroscopy (MRS) signals with baseline and lineshape estimation. Meas Sci Technol 22:114011

    Google Scholar 

  97. Osorio-Garcia MI (2011) Advanced signal processing for magnetic resonance spectroscopy. PhD thesis, Arenberg Doctoral School of Science, Engineering and Technology, Leuven, Belgium

  98. Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14:260–264

    PubMed  CAS  Google Scholar 

  99. Provencher SW (1982) A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Commun 27:213–227

    Google Scholar 

  100. Soher BJ, van Zijl PCM, Duyn JH, Barker PB (2006) Quantitative proton MR spectroscopic imaging of the human brain. Magn Reson Med 35:356–363

    Google Scholar 

  101. de Graaf RA (2008) In vivo NMR spectroscopy. Wiley, London

    Google Scholar 

  102. Hoult DI (2000) The principle of reciprocity in signal strength calculations—a mathematical guide. Concepts Magn Reson 12(4):173–187

    CAS  Google Scholar 

  103. Michaelis T, Merboldt KD, Bruhn H, Hnicke W, Frahm J (1993) Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 187:219–227

    PubMed  CAS  Google Scholar 

  104. Kreis R, Slotboom J, Pietz J, Jung B, Boesch C (2001) Quantitation of localized 31P magnetic resonance spectra based on the reciprocity principle. Magn Reson Med 149:245–250

    CAS  Google Scholar 

  105. Akoka S, Barantin L, Trierweiler M (1999) Concentration measurement by proton NMR using the ERETIC method. Anal Chem 71:2554–2557

    PubMed  CAS  Google Scholar 

  106. Ernst T, Kreis R, Ross BD (1993) Absolute quantitation of water and metabolites in the human brain. I. Compartments and water. J Magn Reson Ser B 102:1–8

    CAS  Google Scholar 

  107. Kreis R, Ernst T, Ross BD (1993) Absolute quantitation of water and metabolites in the human brain. II. Metabolite concentrations. J Magn Reson Ser B 102(1):9–19

    CAS  Google Scholar 

  108. Barker PB, Soher BJ, Blackband SJ, Chatham JC, Mathews VP, Bryan RN (1993) Quantitation of proton NMR spectra of the human brain using tissue water as an internal concentration reference. NMR Biomed 6(1):89–94

    PubMed  CAS  Google Scholar 

  109. Kreis R (1997) Quantitative localized 1H MR spectroscopy for clinical use. J Prog Nucl Magn Reson Spectrosc 31:155–195

    CAS  Google Scholar 

  110. Kreis R (2004) Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 17:361–381

    PubMed  CAS  Google Scholar 

  111. van den Bos A (1994) A Cramér–Rao lower bound for complex parameters. IEEE Trans Signal Process 42(10):2859

    Google Scholar 

  112. van den Bos A (2007) Parameter estimation for scientist and engineers. Wiley, London

    Google Scholar 

  113. Slotboom J, Nirkko A, Brekenfeld C, van Ormondt D (2009) Reliability testing of in vivo magnetic resonance spectroscopy (MRS) signals and signal artifact reduction by order statistic filtering. Meas Sci Technol 20:104030

    Google Scholar 

  114. Bretthorst GL, Hutton WC, Garbow JR, Ackerman JJH (2005) Exponential parameter estimation (in NMR) using bayesian probability theory. Concepts Magn Reson 27A(2):55–63

    CAS  Google Scholar 

  115. Efron B, Tibshirani RJ (1993) An introduction to the boostrap. Chapman and Hall, New York

    Google Scholar 

  116. Bolan PJ, Auffermann WF, Henry P-G, Garwood M (2003) Feasibility of computer-intensive for estimating the variance of spectral fitting parameters. In: Proceedings of the international society of magnetic resonance in medicine, 12th scientific meeting and exhibition, p 304, Toronto, Canada

  117. Rabeson H, Fauvelle F, Testylier G, Foquin A, Carpentier P, Dorandeu F, van Ormondt D, Graveron-Demilly D (2008) Quantitation with QUEST of brain HRMAS-NMR signals: application to metabolic disorders in experimental epileptic seizures. Magn Reson Med 59(6):1266–1273

    PubMed  CAS  Google Scholar 

  118. Fauvelle F, Dorandeu F, Carpentier P, Foquin A, Rabeson H, Graveron-Demilly D, Arvers P, Testylier G (2010) Changes in mouse brain metabolism following a convulsive dose of soman: a proton HRMAS NMR study. Toxicology 267:99–111

    PubMed  CAS  Google Scholar 

  119. Opstad KS, Bell BA, Griffiths JR, Howe FA (2008) Toward accurate quantification of metabolites, lipids, and macromolecules in HRMAS spectra of human brain tumor biopsies using LCModel. Magn Reson Med 60(5):1237–1242

    PubMed  CAS  Google Scholar 

  120. Wright AJ, Fellows GA, Griffiths JR, Wilson M, Bell BA, Howe FA (2010) Ex-vivo HRMAS of adult brain tumours: metabolite quantification and assignment of tumour biomarkers. Mol Cancer 23:59–66

    Google Scholar 

  121. Croitor-Sava A, Martinez-Bisbal MC, Van Huffel S, Cerda JM, Sima DM, Celda B (2011) Ex vivo high resolution magic angle spinning metabolic profiles describe intratumoral histopathological tissue properties in adult human gliomas. Magn Reson Med 65:320–328

    PubMed  CAS  Google Scholar 

  122. Mirbahai L, Wilson M, Shaw CS, McConville C, Malcomson RDG, Kauppinen RA, Peet AC (2012) Lipid biomarkers of glioma cell growth arrest and cell death detected by 1H magic angle spinning MRS. NMR Biomed 25(11):1253–1262

    PubMed  CAS  Google Scholar 

  123. Cavassila S, Fenet B, van den Boogaart A, Rémy C, Briguet A, Graveron-Demilly D (1997) ER-Filter: a preprocessing technique for frequency-selective time-domain analysis. Magn Reson Anal 3:87–92

    Google Scholar 

  124. Hall LD, Talagala SL (1985) Mapping of pH and temperature distribution using chemical-shift-resolved tomography. J Magn Reson 65(3):501–505

    CAS  Google Scholar 

  125. van der Graaf M, Heerschap A (1996) Effect of cation binding on the proton chemical shifts and the spin-spin coupling constant of citrate. J Magn Reson Ser B 112:58–62

    Google Scholar 

  126. Robert O, Sabatier J, Desoubzdanne D, Lalande J, Balayssac S, Gilard V, Martino R, Malet-Martino M (2011) pH optimization for a reliable quantification of brain tumor cell and tissue extracts with 1H NMR: focus on choline-containing compounds and taurine. Anal Bioanal Chem 399:987–999

    PubMed  CAS  Google Scholar 

  127. Lazariev A, Allouche A-R, Aubert-Frécon M, Fauvelle F, Piotto M, Elbayed K, Namer I-J, van Ormondt D, Graveron-Demilly D (2011) Optimization of metabolite basis sets prior to quantitation in magnetic resonance spectroscopy: an approach based on quantum mechanics. Meas Sci Technol 22:114020

    Google Scholar 

  128. Lazariev A, Allouche A-R, Aubert-Frécon M, Fauvelle F, Piotto M, Elbayed K, Namer I-J, van Ormondt D, Graveron-Demilly D (2011) A quantum mechanics-based approach for optimization of metabolite basis sets. Application to quantitation of HRMAS-NMR signals. IRBM 32:279–283

    Google Scholar 

  129. Young K, Govindaraju V, Soher BJ, Maudsley AA (1998) Automated spectral analysis III: application to in vivo proton MR spectroscopy and spectroscopic imaging. Magn Reson Med 40:822–831

    PubMed  Google Scholar 

  130. McLean MA, Woermann FG, Barker GJ, Duncan JS (2000) Quantitative analysis of short echo time 1H-MRSI of cerebral gray and white matter. Magn Reson Med 44:401–411

    PubMed  CAS  Google Scholar 

  131. Mlynarik V, Kohler I, Gambarota G, Vaslin A, Clarke PGH, Gruetter R (2008) Quantitative proton spectroscopic imaging of the neurochemical profile in rat brain with microliter resolution at ultra-short echo times. Magn Reson Med 59:52–58

    PubMed Central  PubMed  CAS  Google Scholar 

  132. Le Fur Y, Nicoli F, Guye M, Confort-Gouny S, Cozzone PJ, Kober F (2010) Grid-free interactive and automated data processing for MR chemical shift imaging data. Magn Reson Mater Phy 23(1):23–30

    Google Scholar 

  133. Jiru F, Skoch A, Wagnerova D, Dezortova M, Hajek M (2011) JSIPRO—spectroscopic imaging processing tool. In: ESMRMB, Leipzig, Germany

  134. Nelson SJ, Ozhinsky E, Li Y, Park IW, Crane J (2013) Strategies for rapid in vivo 1H and hyperpolarized 13C MR spectroscopic imaging. J Magn Reson 229:187–197

    PubMed  CAS  Google Scholar 

  135. Sabati M, Zhan J, Govind V, Arheart KL, Maudsley AA (2013) Volumetric MR spectroscopic imaging with reduced k-space acquisition: variability and pathologic detectability. J Magn Reson Imaging. doi:10.1002/jmri.24130

  136. Cudalbu C, Mlynarik V, Gruetter R (2012) Handling macromolecule signals in the quantification of the neurochemical profile. J Alzheimer Dis 31(Suppl 3):S101–S115

    Google Scholar 

  137. de Beer R, van Ormondt D, van der Veen JW, Graveron-Demilly D (2011) Creating the Semipar custom plug-in for the jMRUI platform. Meas Sci Technol 22:114022

    Google Scholar 

  138. Zhang Y, Shen J (2013) Soft constraints in nonlinear spectral fitting with regularized lineshape deconvolution. Magn Reson Med 69:912–919

    PubMed  PubMed Central  Google Scholar 

  139. Vedrine P, Maksoud WA, Aubert G, Beaudet F, Belorgey J, Bermond S, Berriaud C, Bredy P, Bresson D, Donati A, Dubois O, Gilgrass G, Juster FP, Lannou H, Meuris C, Molinie F, Nusbaum M, Nunio F, Payn A, Schild T, Scola L, Sinanna A (2012) Progress on the iseult/inumac whole body 11.7 T MRI magnet. IEEE Trans Appl Supercond 22(3):804

    Google Scholar 

  140. Deelchand DK, Van de Moortele P-F, Adriany G, Iltis I, Andersen P, Strupp JP, Vaughan JP, Uğurbil K, Henry P-G (2010) In vivo 1H NMR spectroscopy of the human brain at 9.4 T: initial results. J Magn Reson 206:74–80

    PubMed Central  PubMed  CAS  Google Scholar 

  141. Lazariev A, Piotto M, Elbayed K, Namer I.J, van Ormondt D, Graveron-Demilly D (2010) Simple correction of chemical shift changes in magnetic resonance spectroscopy quantitation. In: Proceedings of the IEEE-IST2010, pp 365–368, Thessaloniki, Greece, 1–2

  142. Lazariev A, Fauvelle F, Piotto M, Elbayed K, Namer IJ, van Ormondt D, Graveron-Demilly D (2010) Simple correction of chemical shift changes in magnetic resonance spectroscopy quantitation. In: ISMRM-ESMRMB 2010, p 3318, Stockholm, SE

  143. Alusta P, Im I, Pearce BA, Beger RD, Kretzer RM, Buzatu DA, Wilkes JG (2010) Improving proton MR spectroscopy of brain tissue for noninvasive diagnostics. J Magn Reson Imaging 32:818–829

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the EU Marie Curie Research Network, FAST, MRTNCT-2006-035801 and Philips Medical Systems, Best, NL. The author warmly thanks Dr. Dirk van Ormondt for his fruitful collaboration and MSc Dan Stefan for his huge contribution to the jMRUI software package. She is also grateful to all persons involved in FAST and in the development of the algorithms and the GUI of the jMRUI software package. The author acknowledges Dr. Sylviane Confort-Gouny, CEMEREM-CRMBM, Marseille, France; Dr. Florence Fauvelle, CRSSA, Grenoble and Dr. Dominique Sappey-Marinier, CERMEP-Creatis-LRMN, Lyon, France for providing the MRS, HRMAS and MRSI data respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Graveron-Demilly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graveron-Demilly, D. Quantification in magnetic resonance spectroscopy based on semi-parametric approaches. Magn Reson Mater Phy 27, 113–130 (2014). https://doi.org/10.1007/s10334-013-0393-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-013-0393-4

Keywords

Navigation