Skip to main content
Log in

Rapid vessel prototyping: vascular modeling using 3t magnetic resonance angiography and rapid prototyping technology

  • Short Communication
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object Conversion of thoracic aortic vasculature as measured by Magnetic Resonance Imaging into a real physical replica. Materials and methods Several procedural steps including data acquisition with contrast enhanced MR Angiography at 3T, data visualization and 3D computer model generation, as well as rapid prototyping were used to construct an in-vitro model of the vessel geometry. Results A rapid vessel prototyping process was implemented and used to convert complex vascular geometry of the entire thoracic aorta and major branching arteries into a real physical replica with large anatomical coverage and high spatial resolution. Conclusion Rapid vessel prototyping permits the creation of a concrete solid replica of a patient’s vascular anatomy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chong CK, Rowe CS, Sivanesan S, et al. (1999) Computer aided design and fabrication of models for in vitro studies of vascular fluid dynamics. Proc Inst Mech Eng [H]. 213:1–4

    CAS  Google Scholar 

  2. D’Urso PS, Thompson RG, Atkinson RL, Weidmann MJ, Redmond MJ, Hall BI, Jeavons SJ, Benson MD, Earwaker WJ (1999) Cerebrovascular biomodelling: a technical note. Surg Neurol. 52:490–500

    Article  PubMed  CAS  Google Scholar 

  3. Barker TM, Earwaker WJ, Frost N, Wakeley G (1993) Integration of 3-D medical imaging and rapid prototyping to create stereolithographic models. Aust Phys Eng Sci 16(2):79–85

    CAS  Google Scholar 

  4. Prince MR (1994) Gadolinium-enhanced MR aortography. Radiology 191(1):155–164

    PubMed  CAS  Google Scholar 

  5. Prince MR, Narasimham DL, Stanley JC, Wakefield TW, Messina LM, Zelenock GB, Jacoby WT, Marx MV, Williams DM, Cho KJ (1995) Gadolinium-enhanced magnetic resonance angiography of abdominal aortic aneurysms. J Vasc Surg 21(4):656–669

    Article  PubMed  CAS  Google Scholar 

  6. Frangi AF, Niessen WJ, Nederkoorn PJ, Bakker J, Mali WP, Viergever MA (2001) Quantitative analysis of vascular morphology from 3D MR angiograms: in vitro and in vivo results. Magn Reson Med 45(2):311–322

    Article  PubMed  CAS  Google Scholar 

  7. Yang PC, Nguyen P, Shimakawa A, Brittain J, Pauly J, Nishimura D, Hu B, McConnell M (2004) Spiral magnetic resonance coronary angiography – direct comparison of 1.5 Tesla vs. 3 Tesla. J Cardiovasc Magn Reson 6(4):877–884

    Article  PubMed  Google Scholar 

  8. Markl M, Chan FP, Alley MT, Wedding KL, Draney MT, Elkins CJ, Parker DW, Wicker R, Taylor CA, Herfkens RJ, Pelc NJ (2003) Time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging 17(4):499–506

    Article  PubMed  Google Scholar 

  9. Elkins CJ, Markl M, Pelc N, Eaton JK (2003) 4D Magnetic resonance velocimetry for mean velocity measurements in complex turbulent flows. Exp Fluids 2003;34(4):494–503

    Google Scholar 

  10. Pruessmann KP (2004) Parallel imaging at high field strength: synergies and joint potential. Top Magn Reson Imaging 15(4):237–244

    Article  PubMed  Google Scholar 

  11. Kato K, Ishiguchi T, Maruyama K, Naganawa S, Ishigaki T (2001) Accuracy of plastic replica of aortic aneurysm using 3D-CT data for transluminal stent-grafting: experimental and clinical evaluation. J Comput Assist Tomogr 25(2):300–304

    Article  PubMed  CAS  Google Scholar 

  12. Knox K, Kerber CW, Singel SA, Bailey MJ, Imbesi SG (2005) Stereolithographic vascular replicas from CT scans: choosing treatment strategies, teaching, and research from live patient scan data. AJNR Am J Neuroradiol 26(6):1428–1431

    PubMed  Google Scholar 

  13. Tateshima S, Murayama Y, Villablanca JP, Morino T, Takahashi H, Yamauchi T, Tanishita K, Vinuela F (2001) Intraaneurysmal flow dynamics study featuring an acrylic aneurysm model manufactured using a computerized tomography angiogram as a mold. J Neurosurg 95(6):1020–1027

    Article  PubMed  CAS  Google Scholar 

  14. Norris DG (2003) High field human imaging. J Magn Reson Imaging 18(5):519–529

    Article  PubMed  Google Scholar 

  15. Trattnig S, Ba-Ssalamah A, Noebauer-Huhmann IM, Barth M, Wolfsberger S, Pinker K, Knosp E (2003) MR contrast agent at high-field MRI (3 Tesla). Top Magn Reson Imaging 14(5):365–375

    Article  PubMed  Google Scholar 

  16. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962

    Article  PubMed  CAS  Google Scholar 

  17. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Markl.

Additional information

Parts of this work were presented at the ESMRMB 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markl, M., Schumacher, R., Küffer, J. et al. Rapid vessel prototyping: vascular modeling using 3t magnetic resonance angiography and rapid prototyping technology. MAGMA 18, 288–292 (2005). https://doi.org/10.1007/s10334-005-0019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-005-0019-6

Keywords

Navigation