Skip to main content
Log in

Progress of research in miR-218 and cervical cancer

  • Published:
The Chinese-German Journal of Clinical Oncology

Abstract

MicroRNAs (miRNAs) are small endogenous non-coding RNAs which can specifically silence gene expression, and thereby alter cell and organism phenotype. Deregulation of miRNA expression has been discovered in a variety of tumors and it is now clear that they contribute to cancer development and progression. Previous studies have indicated that miRNAs are involved in developmental timing, cell proliferation, apoptosis, morphogenesis [1], antiviral defense [2], and tumorigenesis [3]. In cancer pathways, altered expression of tumor suppressive or oncogenic miRNAs can disrupt regulatory mechanisms normal. Altered miRNAs expression patterns have been observed in a variety of diseased tissues. Cervical cancer is the most common malignant tumor in female reproductive tract. Recently more and more study showed a large number of miRNAs were down-regulated or up-regulated in cervical cancer. Recent data revealed that miRNA-218 (miR-218) played important roles in tumor initiation and development. This review focuses on analysis of miR-218 and will provide some insight into the progress of cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim VN. Small RNAs: classification, biogenesis, and function. Mol Cells, 2005, 19: 1–15.

    Article  PubMed  CAS  Google Scholar 

  2. Lecellier CH, Dunoyer P, Arar K, et al. A cellular microRNA mediates antiviral defense in human cells. Science, 2005, 308: 557–560.

    Article  PubMed  CAS  Google Scholar 

  3. O’Donnell KA, Wentzel EA, Zeller KI, et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 2005, 435: 839–843.

    Article  PubMed  Google Scholar 

  4. Novina CD, Sharp PA. The RNAi revolution. Nature, 2004, 430: 161–164.

    Article  PubMed  CAS  Google Scholar 

  5. Sullivan CS, Grundhoff AT, Tevethia S, et al. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature, 2005, 435: 682–686.

    Article  PubMed  CAS  Google Scholar 

  6. Gupta A, Gartner JJ, Sethupathy P, et al. Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature, 2006, 442: 82–85.

    PubMed  CAS  Google Scholar 

  7. Burnside J, Bernberg E, Anderson A, et al. Marek’s disease virus encodes MicroRNAs that map to meq and the latency-associated transcript. J Virology, 2006, 80: 8778–8786.

    Article  PubMed  CAS  Google Scholar 

  8. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A, 2004, 101: 2999–3004.

    Article  PubMed  CAS  Google Scholar 

  9. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116: 281–297.

    Article  PubMed  CAS  Google Scholar 

  10. Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A, 2003, 100: 9779–9784.

    Article  PubMed  CAS  Google Scholar 

  11. John B, Enright AJ, Aravin A, et al. Human MicroRNA targets. PLoS Biol, 2004, 2: e363.

    Article  PubMed  Google Scholar 

  12. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120: 15–20.

    Article  PubMed  CAS  Google Scholar 

  13. Tran N, O’Brien CJ, Clark J, et al. Potential role of micro-RNAs in head and neck tumorigenesis. Head Neck, 2010, 32: 1099–1111.

    Article  PubMed  Google Scholar 

  14. Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer, 2006, 6: 259–269.

    Article  PubMed  CAS  Google Scholar 

  15. Li Y, Wang F, Xu J, et al. Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV-related target genes for miR-29. J Pathol, 2011, 224: 484–495.

    Article  PubMed  CAS  Google Scholar 

  16. Wang X, Tang S, Le SY, et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One, 2008, 3: e2557.

    Article  PubMed  Google Scholar 

  17. Wang X, Wang HK, McCoy JP, et al. Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA, 2009, 15: 637–647.

    Article  PubMed  CAS  Google Scholar 

  18. Li B, Hu Y, Ye F, et al. Reduced miR-34a expression in normal cervical tissues and cervical lesions with high-risk human papillomavirus infection. Int J Gynecol Cancer, 2010, 20: 597–604.

    Article  PubMed  Google Scholar 

  19. Petrocca F, Visone R, Onelli MR, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell, 2008, 13: 272–286.

    Article  PubMed  CAS  Google Scholar 

  20. Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A, 2006, 103: 2257–2261.

    Article  PubMed  CAS  Google Scholar 

  21. Wu DW, Cheng YW, Wang J, et al. Paxillin predicts survival and relapse in non-small cell lung cancer by microRNA-218 targeting. Cancer Res, 2010, 70: 10392–10401.

    Article  PubMed  CAS  Google Scholar 

  22. Schembri F, Sridhar S, Perdomo C, et al. MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proc Natl Acad Sci U S A, 2009, 106: 2319–2324.

    Article  PubMed  CAS  Google Scholar 

  23. Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 2006, 9: 189–198.

    Article  PubMed  CAS  Google Scholar 

  24. Alajez NM, Lenarduzzi M, Ito E, et al. MiR-218 suppresses nasopharyngeal cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway. Cancer Res, 2011, 71: 2381–2391.

    Article  PubMed  CAS  Google Scholar 

  25. Griffiths-Jones S, Grocock RJ, van Dongen S, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 2006, 34: D140–D144.

    Article  PubMed  CAS  Google Scholar 

  26. Calin GA, Croce CM. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res, 2006, 66: 7390–7394.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang L, Huang J, Yang N, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A, 2006, 103: 9136–9141.

    Article  PubMed  CAS  Google Scholar 

  28. Tie J, Pan Y, Zhao L, Shrover KR, et al. MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genet, 2010, 6: e1000879.

    Article  PubMed  Google Scholar 

  29. Thomison J 3rd, Thomas LK, et al. Human papillomavirus: molecular and cytologic/histologic aspects related to cervical intraepithelial neoplasia and carcinoma. Hum Pathol, 2008, 39: 154–166.

    Article  PubMed  CAS  Google Scholar 

  30. Stoler MH. Human papillomaviruses and cervical neoplasia: a model for carcinogenesis. Int J Gynecol Pathol, 2000, 19: 16–28.

    Article  PubMed  CAS  Google Scholar 

  31. Bernard HU, Burk RD, Chen Z, et al. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology, 2010, 401: 70–79.

    Article  PubMed  CAS  Google Scholar 

  32. Clifford G, Franceschi S, Diaz M, et al. Chapter 3: HPV type-distribution in women with and without cervical neoplastic diseases. Vaccine, 2006, 3: S3/26–34.

    Google Scholar 

  33. Parkin DM, Bray F. Chapter 2: The burden of HPV-related cancers. Vaccine, 2006, 3: S3/11–25.

    Google Scholar 

  34. Wald AI, Hoskins EE, Wells SI, et al. Alteration of microRNA profiles in squamous cell carcinoma of the head and neck cell lines by human papillomavirus. Head Neck, 2011, 33: 504–512.

    Article  PubMed  Google Scholar 

  35. Nominé Y, Masson M, Charbonnier S, et al. Structural and functional analysis of E6 oncoprotein: insights in the molecular pathways of human papillomavirus-mediated pathogenesis. Mol Cell, 2006, 21: 665–678.

    Article  PubMed  Google Scholar 

  36. Ristriani T, Fournane S, Orfanoudakis G, et al. A single-codon mutation converts HPV16 E6 oncoprotein into a potential tumor suppressor, which induces p53-dependent senescence of HPV-positive HeLa cervical cancer cells. Oncogene, 2009, 28: 762–772.

    Article  PubMed  CAS  Google Scholar 

  37. Martinez I, Gardiner AS, Board KF, et al. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene, 2008, 27: 2575–2582.

    Article  PubMed  CAS  Google Scholar 

  38. Nambaru L, Meenakumari B, Swaminathan R, et al. Prognostic significance of HPV physical status and integration sites in cervical cancer. Asian Pac J Cancer Prev, 2009, 10: 355–360.

    PubMed  Google Scholar 

  39. Li Y, Liu J, Yuan C, et al. High-risk human papillomavirus reduces the expression of microRNA-218 in women with cervical intraepithelial neoplasia. J Int Med Res, 2010, 38: 1730–1736.

    Article  PubMed  CAS  Google Scholar 

  40. Liu Z, Wei S, Ma H, et al. A functional variant at the miR-184 binding site in TNFAIP2 and risk of squamous cell carcinoma of the head and neck. Carcinogenesis, 2011, 32: 1668–1674.

    Article  PubMed  CAS  Google Scholar 

  41. Chen AX, Yu KD, Fan L, et al. Germline genetic variants disturbing the Let-7/LIN28 double-negative feedback loop alter breast cancer susceptibility. PLoS Genet, 2011, 7: e1002259.

    Article  PubMed  CAS  Google Scholar 

  42. Zhou X, Chen X, Hu L, et al. Polymorphisms involved in the miR-218-LAMB3 pathway and susceptibility of cervical cancer, a case-control study in Chinese women. Gynecol Oncol, 2010, 117: 287–290.

    Article  PubMed  CAS  Google Scholar 

  43. Uesugi A, Kozaki K, Tsuruta T, et al. The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res, 2011, 71: 5765–5778.

    Article  PubMed  CAS  Google Scholar 

  44. Davidson MR, Larsen JE, Yang IA, et al. MicroRNA-218 is deleted and downregulated in lung squamous cell carcinoma. PLoS One, 2010, 5: e12560.

    Article  PubMed  Google Scholar 

  45. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol, 2012, 196: 395–406.

    Article  PubMed  CAS  Google Scholar 

  46. Marinkovich MP. Tumour microenvironment: laminin 332 in squamous-cell carcinoma. Nat Rev Cancer, 2007, 7: 370–380.

    Article  PubMed  CAS  Google Scholar 

  47. Culp TD, Budgeon LR, Marinkovich MP, et al. Keratinocyte-secreted laminin 5 can function as a transient receptor for human papillomaviruses by binding virions and transferring them to adjacent cells. J Virol, 2006, 80: 8940–8950.

    Article  PubMed  CAS  Google Scholar 

  48. Legg JA, Herbert JM, Clissold P, et al. Slits and Roundabouts in cancer, tumour angiogenesis and endothelial cell migration. Angiogenesis, 2008, 11: 13–21.

    Article  PubMed  Google Scholar 

  49. Wang B, Xiao Y, Ding BB, et al. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell, 2003, 4: 19–29.

    Article  PubMed  Google Scholar 

  50. Wang XY, Smith DI, Frederick L, et al. Analysis of EGF receptor amplicons reveals amplification of multiple expressed sequences. Oncogene, 1998, 16: 191–195.

    Article  PubMed  CAS  Google Scholar 

  51. Eley GD, Reiter JL, Pandita A, et al. A chromosomal region 7p11.2 transcript map: its development and application to the study of EGFR amplicons in glioblastoma. Neuro Oncol, 2002, 4: 86–94.

    PubMed  CAS  Google Scholar 

  52. Park S, James CD. ECop (EGFR-coamplified and overexpressed protein), a novel protein, regulates NF-kappaB transcriptional activity and associated apoptotic response in an IkappaBalpha-dependent manner. Oncogene, 2005, 24: 2495–2502.

    Article  PubMed  CAS  Google Scholar 

  53. Pikarsky E, Porat RM, Stein I, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature, 2004, 431: 461–466.

    Article  PubMed  CAS  Google Scholar 

  54. Karin M. Nuclear factor-kappaB in cancer development and progression. Nature, 2006, 441: 431–436.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang or Xiaoxia Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, K., Zhang, W. & Hu, X. Progress of research in miR-218 and cervical cancer. Chin. -Ger. J. Clin. Oncol. 12, 399–402 (2013). https://doi.org/10.1007/s10330-012-1186-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10330-012-1186-3

Key words

Navigation