Skip to main content
Log in

Seedling blight of Glycyrrhiza uralensis caused by Pythium myriotylum, P. aphanidermatum and P. spinosum and identifying primary inoculum sources using multiplex PCR detection

  • Fungal Diseases
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Pythium species, isolated from seedlings of Glycyrrhiza uralensis with blight, were identified as P. myriotylum, P. aphanidermatum, and P. spinosum on the basis of morphological characteristics and sequences of the internal transcribed spacer regions of rDNA. In pathogenicity tests, the isolates of the three Pythium species caused blight, producing the original disease symptoms. The primary inoculum source was determined using a multiplex PCR to detect the pathogen. All the Pythium species were detected in the soils of fields with the diseased plants and in soils of adjacent field soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Asano T, Senda M, Suga H, Kageyama K (2010) Development of multiplex PCR to detect five Pythium species related to turfgrass diseases. J Phytopathol 158:609–615

    CAS  Google Scholar 

  • Hendrix FF Jr, Campbell WA (1973) Pythiums as plant pathogens. Annu Rev Phytopathol 11:77–98

    Article  Google Scholar 

  • Ishiguro Y, Asano T, Otsubo K, Suga H, Kageyama K (2013) Simultaneous detection by multiplex PCR of the high-temperature-growing Pythium species: P. aphanidermatum, P. helicoides and P. myriotylum. J Gen Plant Pathol 79:350–358

    Article  CAS  Google Scholar 

  • Kageyama K (2011) Characteristics of high-temperature-growing Pythium species nowadays frequently occurring disease (in Japanese). Plant Prot 65:102–106

    Google Scholar 

  • Kageyama K, Ui T (1981) Pythium species isolated from bean plants and soils in the experimental plots of monoculture and rotation (in Japanese). Ann Phytopath Soc Japan 47:313–319

    Article  Google Scholar 

  • Kageyama K, Ui T (1982) Survival structure of Pythium spp. in the soils of bean fields (in Japanese). Ann Phytopath Soc Japan 48:308–313

    Article  Google Scholar 

  • Kumagai T, Hatakeyama Y, Henmi A, Shibano M, Kusano G (1997) Studies on cultivation and breeding Glycyrrhiza L. (1) (in Japanese). Nat Med 51:403–407

    Google Scholar 

  • Li M, Asano T, Suga H, Kageyama K (2011) A multiplex PCR for the detection of Phytophthora nicotianae and P. cactorum, and a survey of their occurrence in strawberry production areas of Japan. Plant Dis 95:1270–1278

    Article  CAS  Google Scholar 

  • Morita Y, Tojo M (2007) Modifications of PARP medium using fluazinam, miconazole, and nystatin for detection of Pythium spp. in soil. Plant Dis 91:1591–1599

    Article  CAS  Google Scholar 

  • Nakashima C, Araki I, Ito A, Uemura S, Yamamoto A, Suzuki M (2010) Some newly recorded diseases of medical plants caused by Cercospora and its allied genera (abstract in Japanese). Jpn J Phytopathol 76:200

    Google Scholar 

  • Ozaki K, Shibano M, Kusano G, Watanabe H (2007) Aim for production of Glycyrrhizae Radix in Japan (1) A novel cultivation method of Glycyrrhiza uralensis Fisher (in Japanese). Nat Med 61:89–92

    Google Scholar 

  • Ozaki K, Shibano M, Kusano G, Watanabe H (2010) Aim for production of Glycyrrhizae Radix in Japan. (2) Selection of pharmaceutically fine strains from Glycyrrhiza uralensis Fisher (in Japanese). Nat Med 64:76–82

    Google Scholar 

  • Robertson GI (1973) Pathogenicity of Pythium spp. to seeds and seedling roots. New Zeal J Agric Res 16:367–372

    Article  Google Scholar 

  • Shibano M, Ozaki K (2011) Aim for production of Glycyrrhizae Radix in Japan (in Japanese). Bull Osaka Univ Pharm Sci 5:59–68

    Google Scholar 

  • Toda N, Sasaki S, Takeda O, Wei SL, Wang WQ, Wang YG, Shi H, Li G (2012) Cultivation of licorice (Glycyrrhiza uralensis) in China (Part 1): Glycyrrhizin contents in root influenced by stem cutting (in Japanese). Nat Med 66:65–70

    Google Scholar 

  • Tojo M, Fujita Y, Awad HM, Ichitani T (1993) Preparation of Pythium inocula using bentgrass seeds for glasshouse studies (in Japanese). Proc Kansai Pl Prot 35:1–5

    Google Scholar 

  • van der Plaats-Niterink AJ (1981) Monograph of the genus Pythium. Stud Mycol 21:1–242

    Google Scholar 

  • Wang PH, Chang CW (2003) Detection of the low-germination-rate resting oospores of Pythium myriotylum from soil by PCR. Lett Appl Microbiol 36:157–161

    Article  CAS  PubMed  Google Scholar 

  • Wang PH, Chung CY, Lin YS, Yeh Y (2003a) Use of polymerase chain reaction to detect the soft rot pathogen, Pythium myriotylum, in infected ginger rhizomes. Lett Appl Microbiol 36:116–120

    Article  CAS  PubMed  Google Scholar 

  • Wang PH, Wang YT, White JG (2003b) Species-specific PCR primers for Pythium developed from ribosomal ITS1 region. Lett Appl Microbiol 37:127–132

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse GM (1967) Key to Pythium Pringsheim. Commonwealth Mycological Institute, Kew, UK. Mycol Papers 109:1–15

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Yoshimatsu K (2012) Innovative cultivation: hydroponics of medicinal plants in the closed-type cultivation facilities. J Trad Med 29:30–34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Ishiguro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishiguro, Y., Otsubo, K., Watarai, M. et al. Seedling blight of Glycyrrhiza uralensis caused by Pythium myriotylum, P. aphanidermatum and P. spinosum and identifying primary inoculum sources using multiplex PCR detection. J Gen Plant Pathol 80, 230–236 (2014). https://doi.org/10.1007/s10327-014-0508-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-014-0508-4

Keywords

Navigation