Abstract
The transfer of pesticides from agricultural soils to food and drinking water is a major health issue. There are actually few robust methods to identify, characterize and quantify the dissipation of pesticides in complex media such as soils, waters and sediments. Here, we review multi-elemental compound-specific isotope analysis to study sources and transformations of pesticides in agricultural soils. First, we discuss advanced extraction and purification techniques for pesticides in soils. Then, analytical techniques for reliable measurements of the stable isotope composition of the pesticides are presented. We report a unique dataset of 547 isotopic compositions of 71 active molecules produced by various pesticide manufacturers, for the following isotopes: 13C, 15N, 37Cl, and 2H. We also report 270 isotope fractionation values for 33 compounds, which might help to elucidate the mechanisms of pesticide transformation by biodegradation, photodegradation and other abiotic processes. Compounds include legacy pesticides such as atrazine, lindane, dichlorodiphenyltrichloroethane, chlordecone and organophosphorus compounds. Transformation processes may be identified and quantified using the Rayleigh concept for isotope fractionation during reaction.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
Supplementary material.
Code availability
Not applicable.
References
Abdulra’uf L, Tan G (2014) Review of SBSE technique for the analysis of pesticide residues in fruits and vegetables. Chromatographia 77:15–24. https://doi.org/10.1007/s10337-013-2566-8
Aelion CM, Höhener P, Hunkeler D, Aravena R (2010) Environmental isotopes in biodegradation and bioremediation. CRC Press (Taylor and Francis), Boca Raton.
Aeppli C, Holmstrand H, Andersson P, Gustafsson O (2010) Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing. Anal Chem 82:420–426. https://doi.org/10.1021/ac902445f
Allen-King R, Grathwohl P, Ball W (2002) New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks. Adv Water Res 25:985–1016. https://doi.org/10.1016/S0309-1708(02)00045-3
Alvarez-Zaldivara P, Centler F, Maier U, Thullner M, Imfeld G (2016) Biogeochemical modelling of in situ biodegradation and stable isotope fractionation of intermediate chloroethenes in a horizontal subsurface flow wetland. Ecol Eng 90:170–179. https://doi.org/10.1016/j.ecoleng.2016.01.0370
Alvarez-Zaldivar P, Payraudeau S, Meite F, Masbou J, Imfeld G (2018) Pesticide degradation and export losses at the catchment scale: insights from compound-specific isotope analysis (CSIA). Water Res 139:198–207. https://doi.org/10.1016/j.watres.2018.03.061
Anastassiades M, Lehotay S, Stajnbaher D, Schenck F (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Intern 86:412–431. https://doi.org/10.1093/jaoac/86.2.412
Annable W, Frape S, Shouakar-Stash O, Shanoff T, Drimmie R, Harvey F (2007) Cl-37, N-15, C-13 isotopic analysis of common agro-chemicals for identifying non-point source agricultural contaminants. Appl Geochem 22:1530–1536. https://doi.org/10.1016/j.apgeochem.2007.03.049
Antelmi M, Mazzon P, Höhener P et al (2021) Evaluation of MNA in a chlorinated solvents-contaminated aquifer using reactive transport modeling coupled with isotopic fractionation analysis. Water 13:2945. https://doi.org/10.3390/w13212945
Badea S, Vogt C, Gehre M, Fischer A, Danet A, Richnow H (2011) Development of an enantiomer-specific stable carbon isotope analysis (ESIA) method for assessing the fate of alpha-hexachlorocyclohexane in the environment. Rapid Commun Mass Spectrom 25:1363–1372. https://doi.org/10.1002/rcm.4987
Badea S, Danet A (2015) Enantioselective stable isotope analysis (ESIA): a new concept to evaluate the environmental fate of chiral organic contaminants. STOTEN 514:459–546. https://doi.org/10.1016/j.scitotenv.2015.01.082
Bakkour R, Bolotin J, Sellergren B, Hofstetter T (2018) Molecularly imprinted polymers for compound-specific isotope analysis of polar organic micropollutants in aquatic environments. Anal Chem 90:7292–7301. https://doi.org/10.1021/acs.analchem.8b00493
Bernstein A, Shouakar-Stash O, Ebert K, Laskov C, Hunkeler D, Jeannottat S (2011) Compound-specific chlorine isotope analysis: a comparison of gas chromatography/isotope ratio mass spectrometry and gas chromatography/quadrupole mass spectrometry methods in an interlaboratory study. Anal Chem 83:7624–7634. https://doi.org/10.1021/ac200516c
Beven K, Germann P (2013) Macropores and water flow in soils revisited. Water Resour Res 49:3071–3092. https://doi.org/10.1002/wrcr.20156
Bidleman TF, Jantunen LM, Binnur Kurt-Karakus P, Wong F, Hung H, Ma J, Stern G, Rosenberg B (2013) Chiral chemicals as tracers of atmospheric sources and fate processes in a world of changing climate. Mass Spectrom (Tokyo). https://doi.org/10.5702/massspectrometry.S0019
Bouchard D, Hunkeler D, Gaganis P, Aravena R, Höhener P, Kjeldsen P (2008) Carbon isotope fractionation during migration of petroleum hydrocarbon vapors in the unsaturated zone: field experiment at værløse airbase, denmark, and modeling. Environ Sci Technol 42:596–601. https://doi.org/10.1021/es070718f
Brock TCM, Arts GHP, Maltby L, Van den Brink PJ (2009) Aquatic risks of pesticides, ecological protection goals, and common aims in european union legislation. Integr Environ Assess Manag 2:e20–e46. https://doi.org/10.1002/ieam.5630020402Bruzzoniti
Bruzzoniti MC, Checchini L, De Carlo RM, Orlandini S, Rivoira L, Del Bubba M (2014) QuEChERS sample preparation for the determination of pesticides and other organic residues in environmental matrices: a critical review. Anal Bioanal Chem 406:4089–4116. https://doi.org/10.1007/s00216-014-7798-4
Buszewski B, Szultka M (2012) Past, present, and future of solid phase extraction: a review. Crit Rev Anal Chem 42:198–213. https://doi.org/10.1080/07373937.2011.645413
Carson R (1962) Silent spring. Penguin
Centler F, Hesse F, Thullner M (2013) Estimating pathway-specific contributions to biodegradation in aquifers based on dual isotope analysis: theoretical analysis and reactive transport simulations. J Contam Hydrol 152:97–116. https://doi.org/10.1016/j.jconhyd.2013.06.009
Charles M, Pierre S, Olivier E et al (2021) Pesticide resurrection. Environ Chem Lett. https://doi.org/10.1007/s10311-021-01347-z
Chen S, Yang P, Kumar J, Liu Y, Ma L (2017) Inconsistent carbon and nitrogen isotope fractionation in the biotransformation of atrazine by ensifer sp CX-T and sinorhizobium sp K. Int Biodeterior Biodegrad 125:170–176. https://doi.org/10.1016/j.ibiod.2017.09.014
Chen S, Zhang K, Jha R, Chen C, Yu H, Liu Y (2019) Isotope fractionation in atrazine degradation reveals rate-limiting, energy-dependent transport across the cell membrane of gram-negative rhizobium sp. CX-Z. Environ Pollut 248:857–864. https://doi.org/10.1016/j.envpol.2019.02.078
Chevallier M, Cooper M, Kümmel S, Barbance A, Le Paslier D, Richnow H, Saaidi PL, Adrian L (2018) Distinct carbon isotope fractionation signatures during biotic and abiotic reductive transformation of chlordecone. Environ Sci Technol 52:3615–3624. https://doi.org/10.1021/acs.est.7b05394
Correia-Sa L, Fernandes V, Carvalho M, Calhau C, Domingues V, Delerue-Matos C (2012) Optimization of QuEChERS method for the analysis of organochlorine pesticides in soils with diverse organic matter. J Separat Sci 35:1521–1530. https://doi.org/10.1002/jssc.201200087
D’Affonseca FM, Prommer H, Finkel M et al (2011) Modeling the long-term and transient evolution of biogeochemical and isotopic signatures in coal tar-contaminated aquifers. Water Resour Res 47:W05518. https://doi.org/10.1029/2010WR009108
Drenzek N, Tarr C, Eglinton T, Heraty L, Sturchio N, Shiner V (2002) Stable chlorine and carbon isotopic compositions of selected semi-volatile organochlorine compounds. Org Geochem 33:437–444. https://doi.org/10.1016/S0146-6380(02)00004-9
Drenzek N, Eglinton T, Wirsen C, Sturchio N, Heraty L, Sowers K (2004) Invariant chlorine isotopic signatures during microbial PCB reductive dechlorination. Environ Pollut 128:445–448. https://doi.org/10.1016/j.envpol.2003.09.006
Droz B, Drouin G, Maurer L, Villette C, Payraudeau S, Imfeld G (2021) Phase transfer and biodegradation of pesticides in water-sediment systems explored by compound-specific isotope analysis and conceptual modeling. Environ Sci Technol 55:4720–4728. https://doi.org/10.1021/acs.est.0c06283
Drouin G, Droz B, Leresche F, Payraudeau S, Masbou J, Imfeld G (2021) Direct and indirect photodegradation of atrazine and S-metolachlor in agriculturally impacted surface water and associated C and N isotope fractionation. Environ Sci-Processes Impacts 23:1791–1802. https://doi.org/10.33774/chemrxiv-2021-sg66n
Elsner M, Imfeld G (2016) Compound-specific isotope analysis (CSIA) of micropollutants in the environment: current developments and future challenges. Curr Opin Biotechnol 41:60–72. https://doi.org/10.1016/j.copbio.2016.04.014
Farooq S, Nie J, Cheng Y, Yan Z, Li J, Shah Bacha SA, Mushtaqa A, Zhang H (2018) Molecularly imprinted polymers’ application in pesticide residue detection. Analyst 143:3971. https://doi.org/10.1039/C8AN00907D
Fenner K, Canonica S, Wackett L, Elsner M (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341:752–758. https://doi.org/10.1126/science.1236281
Fenner K, Elsner M, Lueders T et al (2021) Methodological advances to study contaminant biotransformation: New prospects for understanding and reducing environmental persistence? ACS EST Water 1:1541–1554. https://doi.org/10.1021/acsestwater.1c00025
Fischer A, Manefield M, Bombach P (2016) Application of stable isotope tools for evaluating natural and stimulated biodegradation of organic pollutants in field studies. Curr Opin Biotechnol 41:99–107. https://doi.org/10.1016/j.copbio.2016.04.026
Gassmann M (2021) Modelling the fate of pesticide transformation products from plot to catchment scale-state of knowledge and future challenges. Front Environ Sci 9:717738. https://doi.org/10.3389/fenvs.2021.717738
Gassmann M, Olsson O, Stamm C, Weiler M, Kümmerer K (2015) Physico-chemical characteristics affect the spatial distribution of pesticide and transformation product loss to an agricultural brook. Sci Total Environ 532:733–743. https://doi.org/10.1016/j.scitotenv.2015.06.068
Grathwohl P, Reinhard M (1993) Desorption of trichloroethylene in aquifer material: rate limitation at the grain scale. Environ Sci Technol 27:2360–2366. https://doi.org/10.1021/es00048a008
Grundmann S, Fuss R, Schmid M et al (2007) Application of microbial hot spots enhances pesticide degradation in soils. Chemosphere 68:511–517. https://doi.org/10.1016/j.chemosphere.2006.12.065
Hartenbach AE, Hofstetter TB, Tentscher PR, Canonica S, Berg M, Schwarzenbach RP (2008) Carbon, hydrogen, and nitrogen isotope fractionation during light-induced transformations of Atrazine. Environ Sci Technol 42:7751–7756. https://doi.org/10.1021/es800356h
Hegeman WJ, Laane RW (2002) Enantiomeric enrichment of chiral pesticides in the environment. Rev Environ Contam Toxicol 173:85–116
Holmstrand H, Andersson P, Gustafsson O (2004) Chlorine isotope analysis of submicromole organochlorine samples by sealed tube combustion and thermal ionization mass spectrometry. Anal Chem 76:2336–2342. https://doi.org/10.1021/ac0354802
Horst A, Renpenning J, Richnow H, Gehre M (2017) Compound specific stable chlorine isotopic analysis of volatile aliphatic compounds using gas chromatography hyphenated with multiple collector inductively coupled plasma mass spectrometry. Anal Chem 89:9131–9138. https://doi.org/10.1021/acs.analchem.7b01875
Hunkeler D, Aravena R, Cox E (2002) Carbon isotopes as a tool to evaluate the origin and fate of vinyl chloride: laboratory experiments and modeling of isotope evolution. Environ Sci Technol 36:3378–3384. https://doi.org/10.1021/es011479d
Hunkeler D, Meckenstock RU, Sherwood Lollar B, Schmidt TC, Wilson J (2008) A guide for assessing biodegradation and source identification of organic ground water contaminants using compound specific isotope analysis (CSIA). Report EPA 600/R-08/148 www.epa.gov/ada
Ivdra N, Herrero-Martin S, Fischer A (2014) Validation of user- and environmentally friendly extraction and clean-up methods for compound-specific stable carbon isotope analysis of organochlorine pesticides and their metabolites in soils. J Chromato A 1355:36–45. https://doi.org/10.1016/j.chroma.2014.06.014
Ivdra N, Fischer A, Herrero-Martin S, Giunta T, Bonifacie M, Richnow H (2017) Carbon, hydrogen and chlorine stable isotope fingerprinting for forensic investigations of hexachlorocyclohexanes. Environ Sci Technol 51:446–454. https://doi.org/10.1021/acs.est.6b03039
Jarvis NJ, Moeys J, Koestel J, Hollis JM (2012) Preferential Flow in a Pedological Perspective. Elsevier Academic Press Inc, San Diego
Jeannottat S, Hunkeler D (2012) Chlorine and carbon isotopes fractionation during volatilization and diffusive transport of trichloroethene in the unsaturated zone. Environ Sci Technol 46:3169–3176. https://doi.org/10.1021/es203547p
Kalathoor R, Zeiner M, Schmidt B et al (2015) First evidence for covalent linkage of acidic metabolites of metalaxyl and DDT as non-extractable pesticide residues in soil and sediment. Environ Chem Lett 13:431–437. https://doi.org/10.1007/s10311-015-0514-6
Kawashima H (2015) The measurement of stable carbon isotope ratios of eight methamidophos samples. J Forensic Sci 60:1360–1364. https://doi.org/10.1111/1556-4029.12825
Knossow N, Siebner H, Bernstein A (2020) Isotope analysis method for the herbicide bromoxynil and its application to study photo-degradation processes. J Haz Mat 388:122036. https://doi.org/10.1016/j.jhazmat.2020.122036
Köhne J, Köhne S, Simunek J (2009a) A review of model applications for structured soils: a) water flow and tracer transport. J Contam Hydrol 104:4–35. https://doi.org/10.1016/j.jconhyd.2008.10.002
Köhne JM, Köhne S, Simunek J (2009b) A review of model applications for structured soils: b) Pesticide transport. J Contam Hydrol 104:36–60. https://doi.org/10.1016/j.jconhyd.2008.10.003
Kujawinski DM, Wolbert JB, Zhang LJ, Jochmann MA, Widory D, Baran N (2013) Carbon isotope ratio measurements of glyphosate and AMPA by liquid chromatography coupled to isotope ratio mass spectrometry. Anal Bioanal Chem 405:2869–2878. https://doi.org/10.1007/s00216-012-6669-0
Kuntze K, Kozell A, Richnow H, Halicz L, Nijenhuis I, Gelman F (2016) Dual carbon-bromine stable isotope analysis allows distinguishing transformation pathways of ethylene dibromide. Environ Sci Technol 50:9855–9863. https://doi.org/10.1021/acs.est.6b01692
Lewis KA, Tzilivakis J, Warner D, Green A (2016) An international database for pesticide risk assessments and management. Hum Ecol Risk Assess 22:1050–1064. https://doi.org/10.1080/10807039.2015.1133242
Li L, Maher K, Navarre-Sitchler A et al (2017) Expanding the role of reactive transport models in critical zone processes. Earth-Sci Rev 165:280–301. https://doi.org/10.1016/j.earscirev.2016.09.001
Lichtfouse E (2000) Compound-specific isotope analysis. application to archaelogy, biomedical sciences, biosynthesis, environment, extraterrestrial chemistry, food science, forensic science, humic substances, microbiology, organic geochemistry, soil science and sport. Rapid Commun Mass Spectrom 14:1337–1344. https://doi.org/10.1002/1097-0231
Lihl C, Renpenning J, Kümmel S, Gelman F, Schürner H, Daubmeier M (2019) Toward improved accuracy in chlorine isotope analysis: synthesis routes for in-house standards and characterization via complementary mass spectrometry methods. Anal Chem 91:12290–12297. https://doi.org/10.1021/acs.analchem.9b02463
Lindahl AML, Soderstrom M, Jarvis N (2008) Influence of input uncertainty on prediction of within-field pesticide leaching risks. J Contam Hydrol 98:106–114. https://doi.org/10.1016/j.jconhyd.2008.03.006
Liu W, Gan J, Schlenk D, Jury WA (2005) Enantioselectivity in environmental safety of current chiral insecticides. Proc Natl Acad Sci 102:701–706. https://doi.org/10.1073/pnas.0408847102
Liu Y, Liu J, Renpenning J, Nijenhuis I, Richnow H (2020) Dual C-Cl isotope analysis for characterizing the reductive dechlorination of alpha- and gamma-hexachlorocyclohexane by two Dehalococcoides mccartyi strains and an enrichment culture. Environ Sci Technol 54:7250–7260. https://doi.org/10.1021/acs.est.9b06407
Liu X, Li W, Kümmel S, Merbach I, Sood U, Gupta V (2021) Soil from a hexachlorocyclohexane contaminated field site inoculates wheat in a pot experiment to facilitate the microbial transformation of beta-hexachlorocyclohexane examined by compound-specific isotope analysis. Environ Sci Technol 55:13812–13821. https://doi.org/10.1021/acs.est.1c03322
Lutz S, van Meerveld HJ, Waterloo MJ et al (2013) A model-based assessment of the potential use of compound-specific stable isotope analysis in river monitoring of diffuse pesticide pollution. Hydrol Earth Syst Sci 17:4505–4524. https://doi.org/10.5194/hess-17-4505-2013
Lutz S, Van Breukelen B (2014) Combined source apportionment and degradation quantification of organic pollutants with CSIA: 1.model derivation. Environ Sci Technol 48:6220–6228. https://doi.org/10.1021/es405400w
Lutz S, van der Velde Y, Elsayed O, Imfeld G, Lefrancq M, Payraudeau S (2017) Pesticide fate on catchment scale: conceptual modelling of stream CSIA data. Hydrol Earth Syst Sci 21:5243–5261. https://doi.org/10.5194/hess-21-5243-2017
Martin-Laurent F, Sahnoun MM, Merlin C, Vollmer G, Lubke M (2014) Detection and quantification of chlordecone in contaminated soils from the French west indies by GC-MS using the 13C10-chlordecone stable isotope as a tracer. Environ Sci Pollut Res 21:4928–4933. https://doi.org/10.1007/s11356-013-1839-y
Masbou J, Meite F, Guyot B, Imfeld G (2018) Enantiomer-specific stable carbon isotope analysis (ESIA) to evaluate degradation of the chiral fungicide metalaxyl in soils. J Haz Mat 353:99–107. https://doi.org/10.1016/j.jhazmat.2018.03.047
Mateo-Sagasta J, Zadeh SM, Turral H, Burke J (2017) Water pollution from agriculture: a global review. Executive summary IWMI - FAO (book) https://www.fao.org/3/ca0146en/CA0146EN.pdf
Melsbach A, Torrento C, Ponsin V, Bolotin J, Lachat L, Prasuhn V, Hofstetter T, Hunkeler D, Elsner M (2020) Dual-element isotope analysis of desphenylchloridazon to investigate its environmental fate in a systematic field study: a long-term lysimeter experiment. Environ Sci Technol 54:3929–3939. https://doi.org/10.1080/10256016.2020.1812599
Meyer A, Penning H, Lowag H, Elsner M (2008) Precise and accurate compound specific carbon and nitrogen isotope analysis of atrazine: critical role of combustion oven conditions. Environ Sci Technol 42:7757–7763. https://doi.org/10.1021/es800534h
Meyer A, Penning H, Elsner M (2009) C and N Isotope fractionation suggests similar mechanisms of microbial atrazine transformation despite involvement of different enzymes (AtzA and TrzN). Environ Sci Technol 43:8079–8085
Meyer A, Elsner M (2013) C13/12C and 15N/14N isotope analysis to characterize degradation of atrazine: evidence from parent and daughter compound values. Environ Sci Technol 47:6884–6891. https://doi.org/10.1021/es305242q
Meyer A, Dybala-Defratyka A, Alaimo P, Geronimo I, Sanchez A, Cramer C (2014) Cytochrome p450-catalyzed dealkylation of atrazine by rhodococcus sp strain n186/21 involves hydrogen atom transfer rather than single electron transfer. Dalton Trans 43:12175–12186. https://doi.org/10.1039/c4dt00891j
Milosevic N, Qiu S, Elsner M, Einsiedl F, Maier M, Bensch H (2013) Combined isotope and enantiomer analysis to assess the fate of phenoxy acids in a heterogeneous geologic setting at an old landfill. Water Res 47:637–649. https://doi.org/10.1016/j.watres.2012.10.029
Mogusu E, Wolbert J, Kujawinski D, Jochmann M, Elsner M (2015) Dual element (C13/12C, 15N/14N) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS. Anal Bioanal Chem 407:5249–5260. https://doi.org/10.1007/s00216-015-8721-3
Penning H, Elsner M (2007) Intramolecular carbon and nitrogen isotope analysis by quantitative dry fragmentation of the phenylurea herbicide isoproturon in a combined injector/capillary reactor prior to GC separation. Anal Chem 79:8399–8405. https://doi.org/10.1021/ac071420a
Penning H, Cramer C, Elsner M (2008) Rate-dependent carbon and nitrogen kinetic isotope fractionation in hydrolysis of isoproturon. Environ Sci Technol 42:7764–7771. https://doi.org/10.1021/es801101c
Perez-Rodriguez P, Schmitt A, Gangloff S, Masbou J, Imfeld G (2021) Plants affect the dissipation and leaching of anilide pesticides in soil mesocosms: insights from compound-specific isotope analysis (CSIA). Agric Ecosyst Environ 308:107257. https://doi.org/10.1016/j.agee.2020.107257
Ponsin V, Torrento C, Lihl C, Elsner M, Hunkeler D (2019) Compound-specific chlorine isotope analysis of the herbicides atrazine, acetochlor, and metolachlor. Anal Chem 91:14290–14298. https://doi.org/10.1021/acs.analchem.9b02497
Prommer H, Sun J, Kocar BD (2019) Using reactive transport models to quantify and predict groundwater quality. Elements 15:87–92. https://doi.org/10.2138/gselements.15.2.87
Reddy C, Drenzek N, Eglinton T, Heraty L, Sturchio N, Shiner V (2002) Stable chlorine intramolecular kinetic isotope effects from the abiotic dehydrochlorination of DDT. Environ Sci Pollut Res 9:183–186. https://doi.org/10.1007/BF02987486
Reinnicke S, Bernstein A, Elsner M (2010) Small and reproducible isotope effects during methylation with trimethylsulfonium hydroxide (TMSH): a convenient derivatization method for isotope analysis of negatively charged molecules. Anal Chem 82:2013–2019. https://doi.org/10.1021/ac902750s
Reinnicke S, Simonsen A, Sorensen S, Aamand J, Elsner M (2012) C and N isotope fractionation during biodegradation of the pesticide metabolite 2,6-dichlorobenzamide (BAM): potential for environmental assessments. Environ Sci Technol 46:1447–1454. https://doi.org/10.1021/es203660g
Roch F, Alexander M (1997) Inability of bacteria to degrade low concentrations of toluene in water. Environ Toxicol Chem 16:1377–1383. https://doi.org/10.1002/etc.5620160707
Sakaguchi-Soder K, Jager J, Grund H, Matthaus F, Schuth C (2007) Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis. Rapid Commun Mass Spectrom 21:3077–3084. https://doi.org/10.1002/rcm.3170
Sandy E, Blake R, Chang S, Jun Y, Yu C (2013) Oxygen isotope signature of UV degradation of glyphosate and phosphonoacetate: tracing sources and cycling of phosphonates. J Haz Mat 260:947–954. https://doi.org/10.1016/j.jhazmat.2013.06.057
Santalad A, Zhou L, Shang F, Fitzpatrick D, Burakham R, Srijaranai S (2010) Micellar electrokinetic chromatography with amperometric detection and off-line solid-phase extraction for analysis of carbamate insecticides. J Chromato A 1217:5288–5297. https://doi.org/10.1016/j.chroma.2010.06.024
Santrock J, Studley S, Hayes J (1985) Isotopic analyses based on the mass-spectrum of carbon-dioxide. Anal Chem 57:1444–1448. https://doi.org/10.1021/ac00284a060
Schimmelmann A, Qi H, Coplen T, Brand W, Fong J, Meier-Augenstein W (2016) Organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements: caffeines, n-alkanes, fatty acid methyl esters, glycines, l-valines, polyethylenes, and oils. Anal Chem 88:4294–4302. https://doi.org/10.1021/acs.analchem.5b04392
Schürner H, Seffernick J, Grzybkowska A, Dybala-Defratyka A, Wackett L, Elsner M (2015) Characteristic isotope fractionation patterns in s-triazine degradation have their origin in multiple protonation options in the s-triazine hydrolase TRZN. Environ Sci Technol 49:3490–3498. https://doi.org/10.1021/es5055385
Schreglmann K, Hoeche M, Steinbeiss S, Reinnicke S, Elsner M (2013) Carbon and nitrogen isotope analysis of atrazine and desethylatrazine at sub-microgram per liter concentrations in groundwater. Anal Bioanal Chem 405:2857–2867. https://doi.org/10.1007/s00216-012-6616-0
Steinberg SM, Pignatello JJ, Sawhney BL (1987) Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores. Environ Sci Technol 21:1201–1208. https://doi.org/10.1021/es00165a007
Stokstad E (2018) France’s decade-old effort to slash pesticide use failed will a new attempt succeed? Science. https://doi.org/10.1126/science.aav6762
Stucki G, Yu CW, Baumgartner T, Gonzalezvalero JF (1995) Microbial atrazine mineralization under carbon limited and denitrifying conditions. Water Res 29:291–296. https://doi.org/10.1016/0043-1354(94)E0101-B
Sun F, Mellage A, Gharasoo M, Melsbach A, Cao X, Zimmermann R, Griebler C, Thullner M, Cirpka OA, Elsner M (2021) Mass-transfer-limited biodegradation at low concentrations. evidence from reactive transport modeling of isotope profiles in a bench-scale aquifer. Environ Sci Technol 55:7386–7397. https://doi.org/10.1021/acs.est.0c08566
Surdyk N, Gutierrez A, Baran N, Thiery D (2021) A lumped model to simulate nitrate concentration evolution in groundwater at catchment scale. J Hydrol 596:125696. https://doi.org/10.1016/j.jhydrol.2020.125696
Tadeo J, Perez R, Albero B, Garcia-Valcarcel A, Sanchez-Brunete C (2012) Review of sample preparation techniques for the analysis of pesticide residues in soil. J AOAC Int 95:1258–1271. https://doi.org/10.5740/jaoacint.sge_tadeo
Thouement H, Kuder T, Heimovaara T, van Breukelen B (2019) Do CSIA data from aquifers inform on natural degradation of chlorinated ethenes in aquitards? J Contam Hydrol 226:103520. https://doi.org/10.1016/j.jconhyd.2019.103520
Torrento C, Bakkour R, Glauser G, Melsbach A, Ponsin V, Hofstetter TB (2019) Solid-phase extraction method for stable isotope analysis of pesticides from large volume environmental water samples. Analyst 144:2898. https://doi.org/10.1039/C9AN00160C
Torrento C, Ponsin V, Lihl C, Hofstetter T, Baran N, Elsner M (2021) Triple-element compound-specific stable isotope analysis (3d-csia): added value of cl isotope ratios to assess herbicide degradation. Environ Sci Technol 55:13891–13901. https://doi.org/10.1021/acs.est.1c03981
Van Acker M, Shahar A, Young E, Coleman M (2006) GC/multiple collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons. Anal Chem 78:4663–4667. https://doi.org/10.1021/ac0602120
Vogel TM (1996) Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol 7:311–316. https://doi.org/10.1016/s0958-1669(96)80036-x
Vogt C, Dorer C, Musat F, Richnow HH (2016) Multi-element isotope fractionation concepts to characterize the biodegradation of hydrocarbons from enzymes to the environment. Curr Opin Biotechnol 41:90–98. https://doi.org/10.1016/j.copbio.2016.04.027
Wanner P, Hunkeler D (2015) Carbon and chlorine isotopologue fractionation of chlorinated hydrocarbons during diffusion in water and low permeability sediments. Geochim Cosmochim Acta 157:198–212. https://doi.org/10.1016/J.GCA.2015.02.034
Weiler M (2017) Macropores and preferential flow-a love-hate relationship. Hydrol Process 31:15–19. https://doi.org/10.1002/hyp.11074
Wu L, Yao Y, Trebse P, Zhang N, Richnow H (2014) Compound specific isotope analysis of organophosphorus pesticides. Chemosphere 111:458–446. https://doi.org/10.1016/j.chemosphere.2014.04.037
Wu L, Liu Y, Liu X, Bajbaj A, Sharma M, Lal R (2019a) Fractionation approach to characterize the reactive transport processes governing the fate of hexachlorocyclohexanes at a contaminated site in India. Environ Int 219:132. https://doi.org/10.1016/j.envint.2019.105036
Wu L, Moses S, Liu Y, Renpenning J, Richnow H (2019b) A concept for studying the transformation reaction of hexachlorocyclohexanes in food webs using multi-element compound-specific isotope analysis. Anal Chim Acta 1064:56–64. https://doi.org/10.1016/j.aca.2019.03.030
Zamane S, Gori D, Höhener P (2020) Multistep partitioning causes significant stable carbon and hydrogen isotope effects during volatilization of toluene and propan-2-ol from unsaturated sandy aquifer sediment. Chemosphere 251:126345. https://doi.org/10.1016/j.chemosphere.2020.126345
Zimmermann J, Halloran L, Hunkeler D (2020) Tracking chlorinated contaminants in the subsurface using compound-specific chlorine isotope analysis: a review of principles, current challenges and applications. Chemosphere 244:125476. https://doi.org/10.1016/j.chemosphere.2019.125476
Acknowledgements
We thank the editorial board and reviewers of ECLE and Maria PRIETO-ESPINOZA for making helpful suggestions for the text.
Funding
This work is funded by the French National research Agency ANR through grant ANR-18-CE04-0004-01, project DECISIVE.
Author information
Authors and Affiliations
Contributions
GI, PH, SP + FML initiated this work by writing the project, DG + PH collected the literature data, and all authors wrote parts of the text.
Corresponding author
Ethics declarations
Conflicts of interest
No conflicts or competing interests declared.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Ethics approval
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Höhener, P., Guers, D., Malleret, L. et al. Multi-elemental compound-specific isotope analysis of pesticides for source identification and monitoring of degradation in soil: a review. Environ Chem Lett 20, 3927–3942 (2022). https://doi.org/10.1007/s10311-022-01489-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10311-022-01489-8