Abstract
Microalgae are feedstocks for production of carbon-neutral biofuels. Efforts have been performed to market microalgae biofuels, yet the production of microalgae biofuel remains a challenge due to the high production cost and low product yield. In particular, lipid extraction is a critical step to be optimized. Here, we review lipid extraction technologies and cell lysis strategies. Extraction techniques involve solvents such as organic solvents, supercritical fluids, ionic liquids, deep eutectic solvents and switchable solvents. Advantages and shortcomings of solvents are discussed. Besides, strategies have been designed to reduce power costs by integration of unit operations in downstream processing. We present single-step processes for simultaneous cell lysis and lipid extraction, such as ultrasound-, microwave-, bead-beating-, surfactant- and pulsed electric field-assisted extractions. The lipid extraction yield is enhanced by incorporating cell disruption into the lipid extraction process.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- ASE:
-
Accelerated solvent extraction
- DBU:
-
1,8-Diazabicyclo-[5.4.0]-undec-7-ene
- DES:
-
Deep eutectic solvents
- IEA:
-
International Energy Agency
- IL:
-
Ionic liquids
- FAMEs:
-
Fatty acid methyl esters
- NADES:
-
Natural deep eutectic solvents
- PEF:
-
Pulsed electric field
- SC-CO2 :
-
Supercritical carbon dioxide
- SFE:
-
Supercritical fluid extraction
- SPS:
-
Switchable polarity solvents
- SHS:
-
Switchable hydrophilicity solvents
- [Amim]+ :
-
1-Allyl-3-methylimidazolium cation
- [BF4]− :
-
Tetrafluoroborate anion
- [CH3SO3]− :
-
Methanesulfonate anion
- [C2mim]+ :
-
1-Ethyl-3-methyl imidazolium cation
- [C4mim]+ :
-
1-Butyl-3-methylimidazolium cation
- [CF3SO3]− :
-
Trifluoromethanesulfonate anion
- [DEP]− :
-
Diethylphosphate anion
- [EtSO4]− :
-
Ethyl sulfate anion
- [HSO4]− :
-
Hydrogen sulfate anion
- [MeSO4]− :
-
Methyl sulfate anion
- [OAc]− :
-
Acetate anion
- [PF6]− :
-
Hexafluorophosphate anion
- [SCN]− :
-
Thiocyanate anion
- [Tf2N]− :
-
Bis(trifluoromethylsulfonyl)imide anion
References
Adam F, Abert-Vian M, Peltier G, Chemat F (2012) “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Bioresour Technol 114:457–465. https://doi.org/10.1016/j.biortech.2012.02.096
Adaramola M (2016) Climate change and the future of sustainability: the impact on renewable resources. Apple Academic Press Inc, Burlington
Adnan MA, Xiong Q, Muraza O, Hossain MM (2020) Gasification of wet microalgae to produce H2-rich syngas and electricity: a thermodynamic study considering exergy analysis. Renewable Energy 147:2195–2205. https://doi.org/10.1016/j.renene.2019.10.027
Al-Ameri M, Al-Zuhair S (2019) Using switchable solvents for enhanced, simultaneous microalgae oil extraction–reaction for biodiesel production. Biochem Eng J 141:217–224. https://doi.org/10.1016/j.bej.2018.10.017
Anto S, Mukherjee SS, Muthappa R et al (2020) Algae as green energy reserve: technological outlook on biofuel production. Chemosphere 242:125079. https://doi.org/10.1016/j.chemosphere.2019.125079
Arun J, Varshini P, Prithvinath PK et al (2018) Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: bio-char and post HTL wastewater utilization studies. Bioresour Technol 261:182–187. https://doi.org/10.1016/j.biortech.2018.04.029
Ashokkumar V, Agila E, Salam Z et al (2014) A study on large scale cultivation of Microcystis aeruginosa under open raceway pond at semi-continuous mode for biodiesel production. Bioresour Technol 172:186–193. https://doi.org/10.1016/j.biortech.2014.08.100
Balasubramanian S, Allen JD, Kanitkar A, Boldor D (2011) Oil extraction from Scenedesmus obliquus using a continuous microwave system—design, optimization, and quality characterization. Bioresour Technol 102:3396–3403. https://doi.org/10.1016/j.biortech.2010.09.119
Barbera E, Bertucco A, Kumar S (2018) Nutrients recovery and recycling in algae processing for biofuels production. Renew Sustain Energy Rev 90:28–42. https://doi.org/10.1016/j.rser.2018.03.004
Bharte S, Desai K (2018) Techniques for harvesting, cell disruption and lipid extraction of microalgae for biofuel production. Biofuels. https://doi.org/10.1080/17597269.2018.1472977
Bhattacharya S, Maurya R, Mishra SK et al (2016) Solar driven mass cultivation and the extraction of lipids from Chlorella variabilis: a case study. Algal Res 14:137–142. https://doi.org/10.1016/j.algal.2016.01.009
Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099
Boyd AR, Champagne P, McGinn PJ et al (2012) Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production. Bioresour Technol 118:628–632. https://doi.org/10.1016/j.biortech.2012.05.084
Bu X, Pang M, Wang B et al (2020) Determination of piperazine in eggs using accelerated solvent extraction (ASE) and solid phase extraction (SPE) with high-performance liquid chromatography-fluorescence detection (HPLC-FLD) and pre-column derivatization with dansyl chloride. Anal Lett 53:53–71. https://doi.org/10.1080/00032719.2019.1636386
Callejón MJJ, Medina AR, Sánchez MDM et al (2020) Obtaining highly pure EPA-rich lipids from dry and wet Nannochloropsis gaditana microalgal biomass using ethanol, hexane and acetone. Algal Res 45:101729. https://doi.org/10.1016/j.algal.2019.101729
Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182. https://doi.org/10.1146/annurev.arplant.043008.092125
Cartens M, Grima EM, Medina AR et al (1996) Eicosapentaenoic acid (20∶ 5n-3) from the marine microalgaPhaeodactylum tricornutum. Journal of the American Oil Chemists’ Society 73:1025–1031. https://doi.org/10.1007/BF02523411
Carullo D, Abera BD, Casazza AA et al (2018) Effect of pulsed electric fields and high pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella vulgaris. Algal Res 31:60–69. https://doi.org/10.1016/j.algal.2018.01.017
Chen C-Y, Chang J-S, Chang H-Y et al (2013) Enhancing microalgal oil/lipid production from Chlorella sorokiniana CY1 using deep-sea water supplemented cultivation medium. Biochem Eng J 77:74–81. https://doi.org/10.1016/j.bej.2013.05.009
Chen X, Hu L, Xing R et al (2015) Ionic liquid-assisted subcritical water promotes the extraction of lipids from wet microalgae Scenedesmus sp. Eur J Lipid Sci Technol 117:1192–1198. https://doi.org/10.1002/ejlt.201400189
Chen S, Qu D, Xiao X, Miao X (2020) Biohydrogen production with lipid-extracted Dunaliella biomass and a new strain of hyper-thermophilic archaeon Thermococcus eurythermalis A501. Int J Hydrogen Energy 45:12721–12730. https://doi.org/10.1016/j.ijhydene.2020.03.010
Cheng C-H, Du T-B, Pi H-C et al (2011) Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2. Bioresour Technol 102:10151–10153. https://doi.org/10.1016/j.biortech.2011.08.064
Choi K, Nakhost Z, Krukonis V, Karel M (1987) Supercritical fluid extraction and characterization of lipids from algae Scenedesmus obliquus. Food Biotechnol 1:263–281. https://doi.org/10.1080/08905438709549669
Choi S-A, Lee J-S, Oh Y-K et al (2014a) Lipid extraction from Chlorella vulgaris by molten-salt/ionic-liquid mixtures. Algal Res 3:44–48. https://doi.org/10.1016/j.algal.2013.11.013
Choi S-A, Oh Y-K, Jeong M-J et al (2014b) Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris. Renewable Energy 65:169–174. https://doi.org/10.1016/j.renene.2013.08.015
Choi SA, Jung JY, Kim K et al (2014c) Effects of molten-salt/ionic-liquid mixture on extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101. Bioprocess Biosyst Eng 37:2199–2204. https://doi.org/10.1007/s00449-014-1197-2
Choi SA, Oh YK, Lee J et al (2019) High-efficiency cell disruption and astaxanthin recovery from Haematococcus pluvialis cyst cells using room-temperature imidazolium-based ionic liquid/water mixtures. Bioresour Technol 274:120–126. https://doi.org/10.1016/j.biortech.2018.11.082
Chowdhury H, Loganathan B (2019) Third-generation biofuels from microalgae: a review. Curr Opin Green Sustain Chem 20:39–44. https://doi.org/10.1016/j.cogsc.2019.09.003
Cicci A, Bravi M (2019) Chapter 14—Leveraging novel green solvents to drive conceptual and practical biorefinery innovation. In: Basile A, Centi G, Falco MD, Iaquaniello G (eds) Studies in surface science and catalysis, vol 179. Elsevier, Amsterdam, pp 243–259. https://doi.org/10.1016/B978-0-444-64337-7.00014-8
Cicci A, Sed G, Bravi M (2017) Potential of choline chloride-based natural deep eutectic solvents (NaDES) in the extraction of microalgal metabolites. Chem Eng Trans 57:61–66
Cooney MJ, Benjamin K (2016) Ionic liquids in lipid extraction and recovery. In: Xu X, Z Guo, Cheong L-Z (eds) Ionic liquids in lipid processing and analysis. Elsevier, Amsterdam, pp 279–316
Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Separ Purif Rev 38:291–325. https://doi.org/10.1080/15422110903327919
Crampon C, Boutin O, Badens E (2011) Supercritical carbon dioxide extraction of molecules of interest from microalgae and seaweeds. Ind Eng Chem Res 50:8941–8953. https://doi.org/10.1021/ie102297d
Dai Y, van Spronsen J, Witkamp G-J et al (2013) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68. https://doi.org/10.1016/j.aca.2012.12.019
Dai Y-M, Chen K-T, Chen C-C (2014) Study of the microwave lipid extraction from microalgae for biodiesel production. Chem Eng J 250:267–273. https://doi.org/10.1016/j.cej.2014.04.031
de Carvalho JC, Magalhães AI, de Melo Pereira GV et al (2020) Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed. Bioresour Technol 300:122719. https://doi.org/10.1016/j.biortech.2019.122719
Denery JR, Dragull K, Tang CS, Li QX (2004) Pressurized fluid extraction of carotenoids from Haematococcus pluvialis and Dunaliella salina and kavalactones from Piper methysticum. Anal Chim Acta 501:175–181. https://doi.org/10.1016/j.aca.2003.09.026
Enamala MK, Enamala S, Chavali M et al (2018) Production of biofuels from microalgae—a review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renew Sustain Energy Rev 94:49–68. https://doi.org/10.1016/j.rser.2018.05.012
Eppink M, Desai R, Fernandez MS, Wijffels R (2019) Mild fractionation of hydrophilic and hydrophobic components from Neochloris oleoabundans using ionic liquids. Front Bioeng Biotechnol 7:284. https://doi.org/10.3389/fbioe.2019.00284
Ferreira A, Reis A, Vidovic S et al (2019) Combining microalgae-based wastewater treatment with biofuel and bio-based production in the frame of a biorefinery. In: Hallmann A, Rampelotto PH (eds) Grand challenges in algae biotechnology. Springer, Berlin, pp 319–369
Figueiredo ARP, da Costa E, Silva J et al (2019) The effects of different extraction methods of lipids from Nannochloropsis oceanica on the contents of omega-3 fatty acids. Algal Res 41:101556. https://doi.org/10.1016/j.algal.2019.101556
Flisar K, Meglic SH, Morelj J et al (2014) Testing a prototype pulse generator for a continuous flow system and its use for E. coli inactivation and microalgae lipid extraction. Bioelectrochemistry 100:44–51. https://doi.org/10.1016/j.bioelechem.2014.03.008
Folch J, Lees M, Sloane Stanley G (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509
Frey W, Gusbeth C, Schwartz T (2013) Inactivation of Pseudomonas putida by pulsed electric field treatment: a study on the correlation of treatment parameters and inactivation efficiency in the short-pulse range. J Membrane Biol 246:769–781. https://doi.org/10.1007/s00232-013-9547-6
Gerken HG, Donohoe B, Knoshaug EP (2013) Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237:239–253. https://doi.org/10.1007/s00425-012-1765-0
Gim GH, Kim SW (2018) Optimization of cell disruption and transesterification of lipids from Botryococcus braunii LB572. Biotechnol Bioprocess Eng 23:550–556. https://doi.org/10.1007/s12257-018-0277-6
Goettel M, Eing C, Gusbeth C et al (2013) Pulsed electric field assisted extraction of intracellular valuables from microalgae. Algal Res 2:401–408. https://doi.org/10.1016/j.algal.2013.07.004
Goh BHH, Ong HC, Cheah MY et al (2019) Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renew Sustain Energy Rev 107:59–74. https://doi.org/10.1016/j.rser.2019.02.012
Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 34:1396–1412. https://doi.org/10.1016/j.biotechadv.2016.10.005
González-González LM, Astals S, Pratt S et al (2019) Impact of osmotic shock pre-treatment on microalgae lipid extraction and subsequent methane production. Bioresour Technol Rep 7:100214. https://doi.org/10.1016/j.biteb.2019.100214
Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274. https://doi.org/10.1007/s10295-008-0495-6
Greenly JM, Tester JW (2015) Ultrasonic cavitation for disruption of microalgae. Bioresour Technol 184:276–279. https://doi.org/10.1016/j.biortech.2014.11.036
Griffiths MJ, van Hille RP, Harrison ST (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24:989–1001. https://doi.org/10.1007/s10811-011-9723-y
Grima EM, González MJI, Giménez AG (2013) Solvent extraction for microalgae lipids. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Berlin, pp 187–205
Guckert JB, Cooksey KE, Jackson LL (1988) Lipid sovent systems are not equivalent for analysis of lipid classes in the microeukaryotic green alga, Chlorella. J Microbiol Methods 8:139–149. https://doi.org/10.1016/0167-7012(88)90015-2
Guerrero-Lemus R, Martínez-Duart JM (eds) (2013) Renewable energy and CO2: current status and costs. In: Renewable energies and CO2. Springer, Berlin, pp 9–33
Günerken E, D’Hondt E, Eppink MHM et al (2015) Cell disruption for microalgae biorefineries. Biotechnol Adv 33:243–260. https://doi.org/10.1016/j.biotechadv.2015.01.008
Günerken E, D’hondt E, Eppink MH et al (2019) Disruption of microalgae with a novel continuous explosive decompression device. Algal Res 39:101376. https://doi.org/10.1016/j.algal.2018.12.001
Halim R, Rupasinghe TWT, Tull DL, Webley PA (2013) Mechanical cell disruption for lipid extraction from microalgal biomass. Bioresour Technol 140:53–63. https://doi.org/10.1016/j.biortech.2013.04.067
Han S-F, Jin W, Yang Q et al (2019) Application of pulse electric field pretreatment for enhancing lipid extraction from Chlorella pyrenoidosa grown in wastewater. Renewable Energy 133:233–239. https://doi.org/10.1016/j.renene.2018.10.034
Harris J, Viner K, Champagne P, Jessop PG (2018) Advances in microalgal lipid extraction for biofuel production: a review. Biofuels Bioprod Biorefin 12:1118–1135. https://doi.org/10.1002/bbb.1923
Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem 46:304–309. https://doi.org/10.1016/j.procbio.2010.08.027
Harun R, Jason WSY, Cherrington T, Danquah MK (2011) Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy 88:3464–3467. https://doi.org/10.1016/j.apenergy.2010.10.048
Hosseini A, Jazini M, Mahdieh M, Karimi K (2020) Efficient superantioxidant and biofuel production from microalga Haematococcus pluvialis via a biorefinery approach. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.123100
Huang W-C, Kim J-D (2013) Cationic surfactant-based method for simultaneous harvesting and cell disruption of a microalgal biomass. Bioresour Technol 149:579–581. https://doi.org/10.1016/j.biortech.2013.09.095
Huang Y, Zhao S, Ding Y-d et al (2017) Optimizing the gas distributor based on CO2 bubble dynamic behaviors to improve microalgal biomass production in an air-lift photo-bioreactor. Bioresour Technol 233:84–91. https://doi.org/10.1016/j.biortech.2017.02.071
Huang W-C, Liu H, Sun W et al (2018) Effective astaxanthin extraction from wet Haematococcus pluvialis using switchable hydrophilicity solvents. ACS Sustain Chem Eng 6:1560–1563. https://doi.org/10.1021/acssuschemeng.7b04624
Ibrahim AFM, Dandamudi KPR, Deng S, Lin YS (2020) Pyrolysis of hydrothermal liquefaction algal biochar for hydrogen production in a membrane reactor. Fuel. https://doi.org/10.1016/j.fuel.2019.116935
Iqbal J, Theegala C (2013) Microwave assisted lipid extraction from microalgae using biodiesel as co-solvent. Algal Res 2:34–42. https://doi.org/10.1016/j.algal.2012.10.001
Iverson SJ, Lang SLC, Cooper MH (2001) Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 36:1283–1287. https://doi.org/10.1007/s11745-001-0843-0
Jeevan Kumar SP, Banerjee R (2019) Enhanced lipid extraction from oleaginous yeast biomass using ultrasound assisted extraction: a greener and scalable process. Ultrason Sonochem 52:25–32. https://doi.org/10.1016/j.ultsonch.2018.08.003
Kapoore R, Butler T, Pandhal J, Vaidyanathan S (2018) Microwave-assisted extraction for microalgae: from biofuels to biorefinery. Biology 7:18. https://doi.org/10.3390/biology7010018
Keris-Sen UD, Sen U, Soydemir G, Gurol MD (2014) An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency. Bioresour Technol 152:407–413. https://doi.org/10.1016/j.biortech.2013.11.018
Khadim SR, Singh P, Singh AK et al (2018) Mass cultivation of Dunaliella salina in a flat plate photobioreactor and its effective harvesting. Bioresour Technol 270:20–29. https://doi.org/10.1016/j.biortech.2018.08.071
Khoo KS, Chew KW, Yew GY et al (2020) Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresour Technol 304:122996. https://doi.org/10.1016/j.biortech.2020.122996
Kim Y-H, Choi Y-K, Park J et al (2012) Ionic liquid-mediated extraction of lipids from algal biomass. Bioresour Technol 109:312–315. https://doi.org/10.1016/j.biortech.2011.04.064
Kim Y-H, Park S, Kim MH et al (2013) Ultrasound-assisted extraction of lipids from Chlorella vulgaris using [Bmim][MeSO4]. Biomass Bioenergy 56:99–103. https://doi.org/10.1016/j.biombioe.2013.04.022
Krishnan S, Ghani NA, Aminuddin NF et al (2020) Microwave-assisted lipid extraction from Chlorella vulgaris in water with 0.5%–2.5% of imidazolium based ionic liquid as additive. Renew Energy 149:244–252. https://doi.org/10.1016/j.renene.2019.12.063
Kuan D, Du W, Dai L et al (2016) Effect of solvent on the extraction of microalgae lipid for biodiesel production. Chem Res Chin Univ 32:625–629. https://doi.org/10.1007/s40242-016-5515-x
Kumar SJ, Banerjee R (2019) Enhanced lipid extraction from oleaginous yeast biomass using ultrasound assisted extraction: a greener and scalable process. Ultrason Sonochemistry 52:25–32
Kumari N, Singh RK (2019) Biofuel and co-products from algae solvent extraction. J Environ Manag 247:196–204. https://doi.org/10.1016/j.jenvman.2019.06.042
Lai YS, Parameswaran P, Li A et al (2014) Effects of pulsed electric field treatment on enhancing lipid recovery from the microalga, Scenedesmus. Bioresour Technol 173:457–461. https://doi.org/10.1016/j.biortech.2014.09.124
Lai YS, De Francesco F, Aguinaga A et al (2016) Improving lipid recovery from Scenedesmus wet biomass by surfactant-assisted disruption. Green Chem 18:1319–1326. https://doi.org/10.1039/C5GC02159F
Lakshmikandan M, Murugesan AG, Wang S et al (2020) Sustainable biomass production under CO2 conditions and effective wet microalgae lipid extraction for biodiesel production. J Clean Prod 247:119398. https://doi.org/10.1016/j.jclepro.2019.119398
Lee I, Han J-I (2015) Simultaneous treatment (cell disruption and lipid extraction) of wet microalgae using hydrodynamic cavitation for enhancing the lipid yield. Bioresour Technol 186:246–251. https://doi.org/10.1016/j.biortech.2015.03.045
Lee SJ, Yoon B-D, Oh H-M (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech 12:553–556. https://doi.org/10.1023/A:1008811716448
Lee J-Y, Yoo C, Jun S-Y et al (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77. https://doi.org/10.1016/j.biortech.2009.03.058
Lee AK, Lewis DM, Ashman PJ (2015) Microalgal cell disruption by hydrodynamic cavitation for the production of biofuels. J Appl Phycol 27:1881–1889. https://doi.org/10.1007/s10811-014-0483-3
Lee SY, Show PL, Ling TC, Chang J-S (2017) Single-step disruption and protein recovery from Chlorella vulgaris using ultrasonication and ionic liquid buffer aqueous solutions as extractive solvents. Biochem Eng J 124:26–35. https://doi.org/10.1016/j.bej.2017.04.009
Lee SY, Chew KW, Show PL (2019a) Cell separation and disruption, product recovery, and purification. In: Berenjian A (ed) Essentials in fermentation technology. Springer, Berlin, pp 237–271
Lee SY, Sankaran R, Chew KW et al (2019b) Waste to bioenergy: a review on the recent conversion technologies. BMC Energy 1:4. https://doi.org/10.1186/s42500-019-0004-7
Leonhardt L, Käferböck A, Smetana S et al (2020) Bio-refinery of Chlorella sorokiniana with pulsed electric field pre-treatment. Bioresour Technol 301:122743. https://doi.org/10.1016/j.biortech.2020.122743
Lewis T, Nichols PD, McMeekin TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J Microbiol Methods 43:107–116. https://doi.org/10.1016/S0167-7012(00)00217-7
Liao Q, Li L, Chen R, Zhu X (2014) A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation. Bioresour Technol 161:186–191. https://doi.org/10.1016/j.biortech.2014.02.119
López-Rosales L, Sánchez-Mirón A, Contreras-Gómez A et al (2019) Characterization of bubble column photobioreactors for shear-sensitive microalgae culture. Bioresour Technol 275:1–9. https://doi.org/10.1016/j.biortech.2018.12.009
Lorente E, Farriol X, Salvadó J (2015) Steam explosion as a fractionation step in biofuel production from microalgae. Fuel Process Technol 131:93–98. https://doi.org/10.1016/j.fuproc.2014.11.009
Lorenzen J, Igl N, Tippelt M et al (2017) Extraction of microalgae derived lipids with supercritical carbon dioxide in an industrial relevant pilot plant. Bioprocess Biosyst Eng 40:911–918. https://doi.org/10.1007/s00449-017-1755-5
Lu W, Alam MA, Pan Y et al (2016) A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhanced lipid recovery for biodiesel production. Bioresour Technol 218:123–128. https://doi.org/10.1016/j.biortech.2016.05.120
Lu H, Yu X, Tu S-T (2017) Low-cost and high-efficient extraction of lipids from chlorella by using industrial ionic liquids. Energy Procedia 105:927–932. https://doi.org/10.1016/j.egypro.2017.03.419
Mäki-Arvela P, Anugwom I, Virtanen P et al (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 32:175–201. https://doi.org/10.1016/j.indcrop.2010.04.005
McKennedy J, Önenç S, Pala M, Maguire J (2016) Supercritical carbon dioxide treatment of the microalgae Nannochloropsis oculata for the production of fatty acid methyl esters. J Supercrit Fluids 116:264–270. https://doi.org/10.1016/j.supflu.2016.06.003
Mendes RL, Reis AD, Palavra AF (2006) Supercritical CO2 extraction of γ-linolenic acid and other lipids from Arthrospira (Spirulina) maxima: comparison with organic solvent extraction. Food Chem 99:57–63. https://doi.org/10.1016/j.foodchem.2005.07.019
Menegazzo ML, Fonseca GG (2019) Biomass recovery and lipid extraction processes for microalgae biofuels production: a review. Renew Sustain Energy Rev 107:87–107. https://doi.org/10.1016/j.rser.2019.01.064
Mubarak M, Shaija A, Suchithra T (2015) A review on the extraction of lipid from microalgae for biodiesel production. Algal Res 7:117–123. https://doi.org/10.1016/j.algal.2014.10.008
Mulbry W, Kondrad S, Buyer J, Luthria DL (2009) Optimization of an oil extraction process for algae from the treatment of manure effluent. J Am Oil Chem Soc 86:909–915. https://doi.org/10.1007/s11746-009-1432-1
Murata N, Nishida I (1987) 12—lipids of blue-green algae (Cyanobacteria). In: Stumpf PK (ed) Lipids: structure and function, vol 9. Academic Press, San Diego, pp 315–347. https://doi.org/10.1016/B978-0-12-675409-4.50018-6
Nagappan S, Devendran S, Tsai P-C et al (2019) Passive cell disruption lipid extraction methods of microalgae for biofuel production—a review. Fuel 252:699–709. https://doi.org/10.1016/j.fuel.2019.04.092
Nagle N, Lemke P (1990) Production of methyl ester fuel from microalgae. Appl Biochem Biotechnol 24:355–361. https://doi.org/10.1007/BF02920259
Neto AMP, Sotana de Souza RA, Leon-Nino AD et al (2013) Improvement in microalgae lipid extraction using a sonication-assisted method. Renewable Energy 55:525–531. https://doi.org/10.1016/j.renene.2013.01.019
Nguyen TDP, Le TVA, Show PL et al (2019) Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent. Bioresour Technol 272:34–39. https://doi.org/10.1016/j.biortech.2018.09.146
Nguyen TT, Lam MK, Uemura Y et al (2020) High biodiesel yield from wet microalgae paste via in situ transesterification: effect of reaction parameters towards the selectivity of fatty acid esters. Fuel. https://doi.org/10.1016/j.fuel.2020.117718
Nwoba EG, Ayre JM, Moheimani NR et al (2016) Growth comparison of microalgae in tubular photobioreactor and open pond for treating anaerobic digestion piggery effluent. Algal Res 17:268–276. https://doi.org/10.1016/j.algal.2016.05.022
Obeid S, Beaufils N, Camy S et al (2018) Supercritical carbon dioxide extraction and fractionation of lipids from freeze-dried microalgae Nannochloropsis oculata and Chlorella vulgaris. Algal Res 34:49–56. https://doi.org/10.1016/j.algal.2018.07.003
Onumaegbu C, Mooney J, Alaswad A, Olabi AG (2018) Pre-treatment methods for production of biofuel from microalgae biomass. Renew Sustain Energy Rev 93:16–26. https://doi.org/10.1016/j.rser.2018.04.015
Orr VCA, Rehmann L (2016) Ionic liquids for the fractionation of microalgae biomass. Curr Opin Green Sustain Chem 2:22–27. https://doi.org/10.1016/j.cogsc.2016.09.006
Orr VCA, Plechkova NV, Seddon KR, Rehmann L (2015) Disruption and wet extraction of the microalgae Chlorella vulgaris using room-temperature ionic liquids. ACS Sustain Chem Eng 4:591–600. https://doi.org/10.1021/acssuschemeng.5b00967
Oswald W (1973) Productivity of algae in sewage disposal. Sol Energy 15:107–117. https://doi.org/10.1016/0038-092X(73)90013-3
Paiva A, Craveiro R, Aroso I et al (2014) Natural deep eutectic solvents–solvents for the 21st century. ACS Sustain Chem Eng 2:1063–1071. https://doi.org/10.1021/sc500096j
Pan J, Muppaneni T, Sun Y et al (2016) Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4]. Fuel 178:49–55. https://doi.org/10.1016/j.fuel.2016.03.037
Pan Y, Alam MA, Wang Z et al (2017) One-step production of biodiesel from wet and unbroken microalgae biomass using deep eutectic solvent. Bioresour Technol 238:157–163. https://doi.org/10.1016/j.biortech.2017.04.038
Patel A, Matsakas L, Sartaj K, Chandra R (2020) Extraction of lipids from algae using supercritical carbon dioxide. In: Ahmed Asiri AM, Kanchi S (eds) Inamuddin. Green sustainable process for chemical and environmental engineering and science. Elsevier, Amsterdam, pp 17–39
Patil PD, Dandamudi KPR, Wang J et al (2018) Extraction of bio-oils from algae with supercritical carbon dioxide and co-solvents. J Supercrit Fluids 135:60–68. https://doi.org/10.1016/j.supflu.2017.12.019
Phan L, Brown H, White J et al (2009) Soybean oil extraction and separation using switchable or expanded solvents. Green Chem 11:53–59. https://doi.org/10.1039/B810423A
Pilaniya K, Chandrawanshi HK, Pilaniya U et al (2010) Recent trends in the impurity profile of pharmaceuticals. J Adv Pharm Technol Res 1:302. https://doi.org/10.4103/0110-5558.72422
Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728. https://doi.org/10.1021/cr9001947
Postma P, Miron T, Olivieri G et al (2015) Mild disintegration of the green microalgae Chlorella vulgaris using bead milling. Bioresour Technol 184:297–304. https://doi.org/10.1016/j.biortech.2014.09.033
Pourmortazavi SM, Hajimirsadeghi SS (2007) Supercritical fluid extraction in plant essential and volatile oil analysis. J Chromatogr A 1163:2–24. https://doi.org/10.1016/j.chroma.2007.06.021
Prabakaran P, Ravindran AD (2011) A comparative study on effective cell disruption methods for lipid extraction from microalgae. Lett Appl Microbiol 53:150–154. https://doi.org/10.1111/j.1472-765X.2011.03082.x
Qv XY, Zhou QF, Jiang JG (2014) Ultrasound-enhanced and microwave-assisted extraction of lipid from Dunaliella tertiolecta and fatty acid profile analysis. J Sep Sci 37:2991–2999. https://doi.org/10.1002/jssc.201400458
Ramluckan K, Moodley KG, Bux F (2014) An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method. Fuel 116:103–108. https://doi.org/10.1016/j.fuel.2013.07.118
Ranjith Kumar R, Hanumantha Rao P, Arumugam M (2015) Lipid extraction methods from microalgae: a comprehensive review. Fron Energy Res 2:61. https://doi.org/10.3389/fenrg.2014.00061
Richter BE, Jones BA, Ezzell JL et al (1996) Accelerated solvent extraction: a technique for sample preparation. Anal Chem 68:1033–1039. https://doi.org/10.1021/ac9508199
Rivera EC, Montalescot V, Viau M et al (2018) Mechanical cell disruption of Parachlorella kessleri microalgae: impact on lipid fraction composition. Bioresour Technol 256:77–85. https://doi.org/10.1016/j.biortech.2018.01.148
Ryckebosch E, Muylaert K, Foubert I (2012) Optimization of an analytical procedure for extraction of lipids from microalgae. J Am Oil Chem Soc 89:189–198. https://doi.org/10.1007/s11746-011-1903-z
Sadeghizadeh A, Moghaddasi L, Rahimi R (2017) CO2 capture from air by Chlorella vulgaris microalgae in an airlift photobioreactor. Bioresour Technol 243:441–447. https://doi.org/10.1016/j.biortech.2017.06.147
Samorì C, Torri C, Samorì G et al (2010) Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents. Bioresour Technol 101:3274–3279. https://doi.org/10.1016/j.biortech.2009.12.068
Santana A, Jesus S, Larrayoz M (2012) Supercritical carbon dioxide extraction of algal lipids for the biodiesel production. Procedia Eng 42:1755–1761. https://doi.org/10.1016/j.proeng.2012.07.569
Sati H, Mitra M, Mishra S, Baredar P (2019) Microalgal lipid extraction strategies for biodiesel production: a review. Algal Res 38:101413. https://doi.org/10.1016/j.algal.2019.101413
Schäfer K (1998) Accelerated solvent extraction of lipids for determining the fatty acid composition of biological material. Anal Chim Acta 358:69–77. https://doi.org/10.1016/S0003-2670(97)00587-4
Sed G, Cicci A, Jessop PG, Bravi M (2018) A novel switchable-hydrophilicity, natural deep eutectic solvent (NaDES)-based system for bio-safe biorefinery. RSC Adv 8:37092–37097. https://doi.org/10.1039/C8RA08536F
Sert BŞ, İnan B, Özçimen D (2018) Effect of chemical pre-treatments on bioethanol production from Chlorella minutissima. Acta Chim Slov 65:160–165. https://doi.org/10.17344/acsi.2017.3728
Shamsuri AA, Abdullah DK (2010) Ionic liquids: preparations and limitations. Makara Sains 14:101–106
Shanmugam S, Mathimani T, Anto S et al (2020) Cell density, lipidomic profile, and fatty acid characterization as selection criteria in bioprospecting of microalgae and cyanobacterium for biodiesel production. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.123061
Sheng J, Vannela R, Rittmann B (2012) Disruption of Synechocystis PCC 6803 for lipid extraction. Water Sci Technol 65:567–573. https://doi.org/10.2166/wst.2012.879
Shuba Eyasu S, Kifle D (2018) Microalgae to biofuels: ‘promising’ alternative and renewable energy, review. Renew Sustain Energy Rev 81:743–755. https://doi.org/10.1016/j.rser.2017.08.042
Silve A, Papachristou I, Wüstner R et al (2018) Extraction of lipids from wet microalga Auxenochlorella protothecoides using pulsed electric field treatment and ethanol-hexane blends. Algal Res 29:212–222. https://doi.org/10.1016/j.algal.2017.11.016
Sivaramakrishnan R, Incharoensakdi A (2018) Microalgae as feedstock for biodiesel production under ultrasound treatment—a review. Bioresour Technol 250:877–887. https://doi.org/10.1016/j.biortech.2017.11.095
Sudhakar M, Kumar BR, Mathimani T, Arunkumar K (2019) A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J Clean Prod 228:1320–1333. https://doi.org/10.1016/j.jclepro.2019.04.287
Sun Y, Huang Y, Liao Q et al (2016) Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor. Bioresour Technol 207:31–38. https://doi.org/10.1016/j.biortech.2016.01.136
Sun Y, Cooke P, Reddy HK et al (2017) 1-Butyl-3-methylimidazolium hydrogen sulfate catalyzed in situ transesterification of Nannochloropsis to fatty acid methyl esters. Energy Convers Manag 132:213–220. https://doi.org/10.1016/j.enconman.2016.10.071
Sztancs G, Juhasz L, Nagy BJ et al (2020) Co-hydrothermal gasification of Chlorella vulgaris and hydrochar: the effects of waste-to-solid biofuel production and blending concentration on biogas generation. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.122793
Taher H, Al-Zuhair S, Al-Marzouqi AH et al (2014) Supercritical carbon dioxide extraction of microalgae lipid: process optimization and laboratory scale-up. J Supercrit Fluids 86:57–66. https://doi.org/10.1016/j.supflu.2013.11.020
Taher H, Giwa A, Abusabiekeh H, Al-Zuhair S (2020) Biodiesel production from Nannochloropsis gaditana using supercritical CO2 for lipid extraction and immobilized lipase transesterification: economic and environmental impact assessments. Fuel Process Technol 198:106249. https://doi.org/10.1016/j.fuproc.2019.106249
Tan JS, Lee SY, Chew KW et al (2020) A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered 11:116–129. https://doi.org/10.1080/21655979.2020.1711626
Tang H, Abunasser N, Garcia MED et al (2011) Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl Energy 88:3324–3330. https://doi.org/10.1016/j.apenergy.2010.09.013
Tang Y, Zhang Y, Rosenberg JN et al (2016) Efficient lipid extraction and quantification of fatty acids from algal biomass using accelerated solvent extraction (ASE). RSC Adv 6:29127–29134. https://doi.org/10.1039/C5RA23519G
Tang X, Zuo M, Li Z et al (2017) Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents. Chemsuschem 10:2696–2706. https://doi.org/10.1002/cssc.201700457
Tayari S, Abedi R, Rahi A (2020) Comparative assessment of engine performance and emissions fueled with three different biodiesel generations. Renewable Energy 147:1058–1069. https://doi.org/10.1016/j.renene.2019.09.068
Thoisen C, Hansen BW, Nielsen SL (2017) A simple and fast method for extraction and quantification of cryptophyte phycoerythrin. MethodsX 4:209–213. https://doi.org/10.1016/j.mex.2017.06.002
Tommasi E, Cravotto G, Galletti P et al (2017) Enhanced and selective lipid extraction from the microalga P. tricornutum by dimethyl carbonate and supercritical CO2 using deep eutectic solvents and microwaves as pretreatment. ACS Sustain Chem Eng 5:8316–8322. https://doi.org/10.1021/acssuschemeng.7b02074
Topare NS, Raut SJ, Renge V et al (2011) Extraction of oil from algae by solvent extraction and oil expeller method. Int J Chem Sci 9:1746–1750
Wahidin S, Idris A, Shaleh SRM (2014) Rapid biodiesel production using wet microalgae via microwave irradiation. Energy Convers Manag 84:227–233. https://doi.org/10.1016/j.enconman.2014.04.034
Wahidin S, Idris A, Shaleh SRM (2016) Ionic liquid as a promising biobased green solvent in combination with microwave irradiation for direct biodiesel production. Bioresour Technol 206:150–154. https://doi.org/10.1016/j.biortech.2016.01.084
Wahidin S, Idris A, Yusof NM et al (2018) Optimization of the ionic liquid-microwave assisted one-step biodiesel production process from wet microalgal biomass. Energy Convers Manag 171:1397–1404. https://doi.org/10.1016/j.enconman.2018.06.083
Wang G, Wang T (2012) Characterization of lipid components in two microalgae for biofuel application. J Am Oil Chem Soc 89:135–143. https://doi.org/10.1007/s11746-011-1879-8
Wu C, Xiao Y, Lin W et al (2017) Surfactants assist in lipid extraction from wet Nannochloropsis sp. Bioresour Technol 243:793–799. https://doi.org/10.1016/j.biortech.2017.07.010
Xie Y, Ho S-H, Chen C-NN et al (2016) Disruption of thermo-tolerant Desmodesmus sp. F51 in high pressure homogenization as a prelude to carotenoids extraction. Biochem Eng J 109:243–251. https://doi.org/10.1016/j.bej.2016.01.003
Xu S, Elsayed M, Ismail GA et al (2019) Evaluation of bioethanol and biodiesel production from Scenedesmus obliquus grown in biodiesel waste glycerol: a sequential integrated route for enhanced energy recovery. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2019.111907
Yadav G, Dash SK, Sen R (2019) A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production. Sci Total Environ 688:129–135. https://doi.org/10.1016/j.scitotenv.2019.06.024
Yew GY, Lee SY, Show PL et al (2019) Recent advances in algae biodiesel production: from upstream cultivation to downstream processing. Bioresour Technol Rep 7:100227. https://doi.org/10.1016/j.biteb.2019.100227
Yoo G, Park W-K, Kim CW et al (2012) Direct lipid extraction from wet Chlamydomonas reinhardtii biomass using osmotic shock. Bioresour Technol 123:717–722. https://doi.org/10.1016/j.biortech.2012.07.102
Yu X, Yang J, Lu H et al (2015) Energy-efficient extraction of fuel from Chlorella vulgaris by ionic liquid combined with CO2 capture. Appl Energy 160:648–655. https://doi.org/10.1016/j.apenergy.2015.04.074
Yu Q, Qin L, Liu Y et al (2019) In situ deep eutectic solvent pretreatment to improve lignin removal from garden wastes and enhance production of bio-methane and microbial lipids. Bioresour Technol 271:210–217. https://doi.org/10.1016/j.biortech.2018.09.056
Zbinden MDA, Sturm BS, Nord RD et al (2013) Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae. Biotechnol Bioeng 110:1605–1615. https://doi.org/10.1002/bit.24829
Zhang Y, Cui Y, Liu S et al (2020) Fast microwave-assisted pyrolysis of wastes for biofuels production—a review. Bioresour Technol 297:122480. https://doi.org/10.1016/j.biortech.2019.122480
Zheng H, Yin J, Gao Z et al (2011) Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl Biochem Biotechnol 164:1215–1224. https://doi.org/10.1007/s12010-011-9207-1
Zhou W, Wang Z, Alam MA et al (2019) Repeated utilization of ionic liquid to extract lipid from algal biomass. Int J Polym Sci 2019:1–7. https://doi.org/10.1155/2019/9209210
Zuorro A, Maffei G, Lavecchia R (2016) Optimization of enzyme-assisted lipid extraction from Nannochloropsis microalgae. J Taiwan Inst Chem Eng 67:106–114. https://doi.org/10.1016/j.jtice.2016.08.016
Acknowledgements
The authors gratefully acknowledge the support of Universiti Tunku Abdul Rahman (UTAR) research grant (Grant No. IPSR/RMC/UTARRF/2019-C1/L05).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lee, S.Y., Khoiroh, I., Vo, DV.N. et al. Techniques of lipid extraction from microalgae for biofuel production: a review. Environ Chem Lett 19, 231–251 (2021). https://doi.org/10.1007/s10311-020-01088-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10311-020-01088-5