Skip to main content
Log in

Enhanced degradation of trichloroethylene using bentonite-supported nanoscale Fe/Ni and humic acids

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Nanoscale zero-valent iron, named nano-Fe0, is a reagent used to degrade trichloroethylene in groundwater. However, the efficiency of nano-Fe0 is moderate due to issues of dispersion and reactivity. As an alternative we synthesized bentonite-supported nanoscale Fe/Ni bimetals, named bentonite-Fe/Ni, to test the degradation of trichloroethylene in the presence of Suwannee River humic acids, as a representative of natural organic matter. 0.1 mmol/L trichloroethylene was reacted with 0.5 g/L of nano-Fe0, bentonite-Fe, Fe/Ni, and bentonite-Fe/Ni nanoparticles. Results show first that without humic acids the reaction rate constants k obs were 0.0036/h for nano-Fe0, 0.0101/h for bentonite-Fe, 0.0984/h for Fe/Ni, and 0.181/h for bentonite-Fe/Ni. These findings show that bentonite-Fe/Ni is the most efficient reagent. Second, the addition of humic acids increased the rate constant from 0.178/h for 10 mg/L humic acids to 0.652/h for 40 mg/L humic acids, using the bentonite-Fe/Ni catalyst. This finding is explained by accelerated dechlorination by faster electron transfer induced by humic quinone moieties. Indeed, the use of 9, 10-anthraquinone-2, 6-disulfonate as a humic analogue gave similar results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bransfield SJ, Cwiertny DM, Roberts AL, Fairbrother DH (2006) Influence of copper loading and surface coverage on the reactivity of granular iron toward 1,1,1-trichloroethane. Environ Sci Technol 40(5):1485–1490. doi:10.1021/es051300p

    Article  CAS  Google Scholar 

  • Chen J, Xiu Z, Lowry GV, Alvarez PJJ (2011) Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Res 45(5):1995–2001. doi:10.1016/j.watres.2010.11.036

    Article  CAS  Google Scholar 

  • Cwiertny DM, Bransfield SJ, Livi KJT, Fairbrother DH, Roberts AL (2006) Exploring the influence of granular iron additives on 1,1,1-trichloroethane reduction. Environ Sci Technol 40(21):6837–6843. doi:10.1021/es060921v

    Article  CAS  Google Scholar 

  • Dong H, Lo I (2013) Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid. Water Res 47(7):2489–2496. doi:10.1016/j.watres.2013.02.022

    Article  CAS  Google Scholar 

  • Doong RA, Lai YJ (2005) Dechlorination of tetrachloroethylene by palladized iron in the presence of humic acid. Water Res 39(11):2309–2318. doi:10.1016/j.watres.2005.04.036

    Article  CAS  Google Scholar 

  • Dsikowitzky L, Schwarzbauer J (2014) Industrial organic contaminants: identification, toxicity and fate in the environment. Environ Chem Lett 12(3):371–386. doi:10.1007/s10311-014-0467-1

    Article  CAS  Google Scholar 

  • Fan J, Liu F, Hu Y, Chen J (2015) Effects of pH and ionic composition on sorption/desorption of natural organic matter on zero-valent iron and magnetite nanoparticles. Water Sci Technol 72(2):303–310. doi:10.2166/wst.2015.219

    Article  CAS  Google Scholar 

  • Giasuddin ABM, Kanel SR, Choi H (2007) Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ Sci Technol 41(6):2022–2027. doi:10.1021/es0616534

    Article  CAS  Google Scholar 

  • Gillham RW, Ohannesin SF (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32(6):958–967. doi:10.1111/j.1745-6584.1994.tb00935.x

    Article  CAS  Google Scholar 

  • Johnson RL, Nurmi JT, O’Brien Johnson GS, Fan D, O’Brien Johnson RL, Shi Z, Salter-Blanc AJ, Tratnyek PG, Lowry GV (2013) Field-scale transport and transformation of carboxymethylcellulose-stabilized nano zero-valent iron. Environ Sci Technol 47(3):1573–1580. doi:10.1021/es304564q

    Article  CAS  Google Scholar 

  • Kang SH, Choi W (2009) Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electron shuttle. Environ Sci Technol 43(3):878–883. doi:10.1021/es801705f

    Article  CAS  Google Scholar 

  • Krause RWM, Mamba BB, Dlamini LN, Durbach SH (2010) Fe–Ni nanoparticles supported on carbon nanotube-co-cyclodextrin polyurethanes for the removal of trichloroethylene in water. J Nanopart Res 12(2):449–456. doi:10.1007/s11051-009-9659-1

    Article  CAS  Google Scholar 

  • Lee HJ, Kim HH, Lee H, Lee C (2015) Reaction of aqueous iodide at high concentration with O3 and O3/H2O2 in the presence of natural organic matter: implications for drinking water treatment. Environ Chem Lett 13(4):453–458. doi:10.1007/s10311-015-0519-1

    Article  CAS  Google Scholar 

  • Li S, Wang W, Liu Y, Zhang W (2014) Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: a pilot-scale demonstration. Chem Eng J 254:115–123. doi:10.1016/j.cej.2014.05.111

    Article  Google Scholar 

  • Liu YQ, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39(5):1338–1345. doi:10.1021/es049195r

    Article  CAS  Google Scholar 

  • Liu Y, Phenrat T, Lowry GV (2007) Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H-2 evolution. Environ Sci Technol 41(22):7881–7887. doi:10.1021/es0711967

    Article  CAS  Google Scholar 

  • Lopez-Tellez G, Barrera-Diaz CE, Balderas-Hernandez P, Roa-Morales G, Bilyeu B (2011) Removal of hexavalent chromium in aquatic solutions by iron nanoparticles embedded in orange peel pith. Chem Eng J 173(2):480–485. doi:10.1016/j.cej.2011.08.018

    Article  CAS  Google Scholar 

  • Rajajayavel SRC, Ghoshal S (2015) Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron. Water Res 78:144–153. doi:10.1016/j.watres.2015.04.009

    Article  CAS  Google Scholar 

  • Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel–iron nanoparticles. Chem Mater 14(12):5140–5147. doi:10.1021/cm020737i

    Article  CAS  Google Scholar 

  • Stroo HF, Leeson A, Marqusee JA, Johnson PC, Ward CH, Kavanaugh MC, Sale TC, Newell CJ, Pennell KD, Lebrón CA, Unger M (2012) Chlorinated ethene source remediation: lessons learned. Environ Sci Technol 46(12):6438–6447. doi:10.1021/es204714w

    Article  CAS  Google Scholar 

  • Tan L, Liang B, Fang Z, Xie Y, Tsang EP (2014) Effect of humic acid and transition metal ions on the debromination of decabromodiphenyl by nano zero-valent iron: kinetics and mechanisms. J Nanopart Res 16(12):2786. doi:10.1007/s11051-014-2786-3

    Article  Google Scholar 

  • Tee YH, Grulke E, Bhattacharyya D (2005) Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water. Ind Eng Chem Res 44(18):7062–7070. doi:10.1021/ie050086a

    Article  CAS  Google Scholar 

  • Tratnyek PG, Scherer MM, Deng BL, Hu SD (2001) Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron. Water Res 35(18):4435–4443. doi:10.1016/S0043-1354(01)00165-8

    Article  CAS  Google Scholar 

  • Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156. doi:10.1021/es970039c

    Article  CAS  Google Scholar 

  • Wang Y, Zhou D, Wang Y, Zhu X, Jin S (2011) Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron. J Environ Sci 23(8):1286–1292. doi:10.1016/S1001-0742(10)60543-8

    Article  CAS  Google Scholar 

  • Xie L, Shang C (2005) Role of humic acid and quinone model compounds in bromate reduction by zerovalent iron. Environ Sci Technol 39(4):1092–1100. doi:10.1021/es049027z

    Article  CAS  Google Scholar 

  • Xu F, Deng S, Xu J, Zhang W, Wu M, Wang B, Huang J, Yu G (2012) Highly active and stable Ni–Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol. Environ Sci Technol 46(8):4576–4582. doi:10.1021/es203876e

    Article  CAS  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3–4):323–332. doi:10.1023/A:1025520116015

    Article  CAS  Google Scholar 

  • Zhao D, Cheng J, Chen J (2014) One-step synthesis of bentonite-supported nanoscale Fe/Ni bimetals for rapid degradation of methyl orange in water. Environ Chem Lett 12(3):461–466. doi:10.1007/s10311-014-0473-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (41472232, 41272061), Fundamental Research Funds for the Central Universities and National Innovation Experiment Program for University Students (201411415051). We appreciate Dr. Prof. Gregory V. Lowry (Carnegie Mellon University) for valuable discussion. We also thank the editors and two anonymous reviewers for their instructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Han, Y., Cao, X. et al. Enhanced degradation of trichloroethylene using bentonite-supported nanoscale Fe/Ni and humic acids. Environ Chem Lett 14, 237–242 (2016). https://doi.org/10.1007/s10311-015-0548-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0548-9

Keywords

Navigation