Skip to main content

Advertisement

Log in

Sequestration of heavy metals from soil with Fe–Mn concretions and nodules

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

In recent years, heavy metal contamination has become a major environmental issue in many parts of the world. Fe and Mn oxides, oxyhydroxides and hydroxides have long been recognized as scavengers playing an important role in controlling the location, mobility and bioavailability of metal contaminants in soils. Fe–Mn concretions and nodules are discrete bodies made of soil or sediment materials cemented together under the influence of Fe and Mn oxides. Here metals sorption by Fe–Mn concretions and nodules are surveyed and critical reviewed. Valuable available literature data demonstrate that the formation of Fe–Mn concretions and nodules is the most efficient and durable process for metal contaminants sequestration in the soils. The papers discussed in this review show that the application of Fe–Mn concretions and nodules, as geochemical scavengers for remediating metal contaminated soils, is strongly recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aide M (2005) Elemental composition of soil nodules from two alfisols on an alluvial terrace in Missouri. Soil Sci 170:1022–1033. doi:10.1097/01.ss.0000187351.16740.55

    Article  CAS  Google Scholar 

  • Banerjee R, Roy S, Dasgupta S, Mukhopadhyay S, Miura H (1999) Petrogenesis of ferromanganese nodules from east of the Chagos Archipelago, Central Indian Basin, Indian Ocean. Mar Geol 157:145–158. doi:10.1016/S0025-3227(98)00156-X

    Article  CAS  Google Scholar 

  • Belzile N, Chen YW, Grenier M (2001) Freshwater metallic concretions from an acidic lake characterized by X-ray energy dispersive spectrometry. Can J Anal Sci Spectr 46:145–151

    CAS  Google Scholar 

  • Burns RG (1976) The uptake of cobalt into ferromanganese nodules, soil, and synthetic manganese (IV) oxides. Geochim Cosmochim Acta 40:95–102. doi:10.1016/0016-7037(76)90197-6

    Article  CAS  Google Scholar 

  • Cescas MP, Tyner EH, Harmer RS (1970) Ferromanganiferous soil concretions: a scanning electron microscope study of their microscope structures. Soil Sci Soc Am Proc 34:641–644

    Article  Google Scholar 

  • Chen ZS, Lee GJ, Liu JC (2000) The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils. Chemosphere 41:235–242. doi:10.1016/S0045-6535(99)00416-6

    Article  CAS  Google Scholar 

  • Chen Z, Kim KW, Zhu YG, McLaren R, Liu F, He JZ (2006) Adsorption (As III, V) and oxidation (As III) of arsenic by pedogenic Fe-Mn nodules. Geoderma 136:566–572. doi:10.1016/j.geoderma.2006.04.012

    Article  CAS  Google Scholar 

  • Childs CW (1975) Composition of iron-manganese concretions from some New Zealand soils. Geoderma 13:141–152. doi:10.1016/0016-7061(75)90063-4

    Article  CAS  Google Scholar 

  • Childs CW, Leslie DM (1977) Interelement relationships in iron-manganese concretions from a catenary sequence of yellow-grey earth soils in loess. Soil Sci 123:369–376. doi:10.1097/00010694-197706000-00005

    Article  CAS  Google Scholar 

  • Contin M, Mondini C, Leita L, De Nobili M (2007) Enhanced soil toxic metal fixation in iron (hydr)oxides by redox cycles. Geoderma 140:164–175. doi:10.1016/j.geoderma.2007.03.017

    Article  CAS  Google Scholar 

  • Cornu S, Deschatrettes V, Salvador-Blanes S, Clozel B, Hardy M, Branchut S, LeForestier L (2005) Trace element accumulation in Mn-Fe-oxide nodules of a planosolic horizon. Geoderma 125:11–24. doi:10.1016/j.geoderma.2004.06.009

    Article  CAS  Google Scholar 

  • D’Amore JJ, Al-Abed SR, Scheckel KG, Ryan JA (2005) Methods for speciation of metals in soils. J Environ Qual 34:1707–1745. doi:10.2134/jeq2004.0014

    Article  Google Scholar 

  • Davranche M, Bollinger JC (2000) Release of metals from iron oxyhydroxides under reductive conditions: effect of metal/solid interactions. J Colloid Interface Sci 232:165–173. doi:10.1006/jcis.2000.7177

    Article  CAS  Google Scholar 

  • Dawson BSW, Ferguson JE, Campbell AS, Cutler EJB (1985) Distribution of elements in some Fe-Mn nodules and an iron-pan in some gley soils of New Zealand. Geoderma 35:127–143. doi:10.1016/0016-7061(85)90026-6

    Article  CAS  Google Scholar 

  • Drosdoff M, Nikiforoff CC (1940) Iron–manganese concretions in Dayton soils. Soil Sci 49:333–345. doi:10.1097/00010694-194005000-00001

    Article  CAS  Google Scholar 

  • Gaiffe M, Kubler B (1992) Relationships between mineral composition and relative ages of iron nodules in Jurassian soil sequences. Geoderma 52:343–350. doi:10.1016/0016-7061(92)90045-9

    Article  CAS  Google Scholar 

  • Gasparatos D (2007) Genesis of Fe–Mn concretions and nodules in Alfisols of Thessaly. Dissertation, Agricultural University of Athens, Greece, p 275

  • Gasparatos D (2012) Fe-Mn concretions and nodules to sequester heavy metals in soils. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Environmental chemistry for a sustainable world. Vol 2: Remediation of air and water pollution. Springer, Berlin, pp 443–474. doi:10.1007/978-94-007-2439-6_11

    Chapter  Google Scholar 

  • Gasparatos D, Haidouti C, Tarenidis D (2004a) Characterization of iron oxides in Fe-rich concretions from an imperfectly drained Greek soil: a study by selective-dissolution techniques and X-ray diffraction. Arch Agron Soil Sci 50:485–493. doi:10.1080/0365034042000216149

    Article  CAS  Google Scholar 

  • Gasparatos D, Haidouti C, Tarenidis D, Tsagalidis A (2004b) Enrichment factors of heavy metals in iron–manganese concretions from imperfectly drained soils. Bull Geol Soc Greece 36:158–163

    Google Scholar 

  • Gasparatos D, Tarenidis D, Haidouti C, Oikonomou G (2005) Microscopic structure of soil Fe-Mn nodules: environmental implications. Environ Chem Lett 2:175–178. doi:10.1007/s10311-004-0092-5

    Article  CAS  Google Scholar 

  • Gasparatos D, Haidouti C, Haroulis A, Tsaousidou P (2006) Estimation of phosphorus status of soil Fe-enriched concretions with the acid ammonium oxalate method. Commun Soil Sci Plan 37:2375–2387. doi:10.1080/00103620600819891

    Article  CAS  Google Scholar 

  • Giannakopoulou F, Gasparatos D, Haidouti C and Massas I (2012) Sorption behavior of Cesium in two Greek soils: Effects of Cs initial concentration, clay mineralogy and particle size fraction. Soil Sediment Contam. doi:10.1080/15320383.2012.714418

  • Halbach P (1976) Mineralogical and geochemical investigations of Finnish lakes ore. Bull Geol Soc Finland 48:33–42

    Google Scholar 

  • Hettiarachchi GM, Pierzynski GM (2002) In situ stabilization of soil lead using phosphorus and manganese oxide: influence of plant growth. J Environ Qual 31:564–572

    Article  CAS  Google Scholar 

  • Hickey PJ, McDaniel PA, Strawn DG (2008) Characterization of iron–manganese cemented redoximorphic aggregates on Wetland soils contaminated with mine wastes. J Environ Qual 37:2375–2385. doi:10.2134/jeq2007.0488

    Article  CAS  Google Scholar 

  • Knox AS, Seaman JC, Mench MJ, Vangronsveld J (2001) Remediation of metal-and radionuclides contaminated soils by in situ stabilization techniques. In: Iskandar IK (ed) Environmental restoration of metals-contaminated soils. CRC Press LLC, Boca Raton, pp 21–60

    Google Scholar 

  • Koschinsky A, Halbach P (1995) Sequential leaching of marine ferromanganese precipitates. Geochim Cosmochim Acta 59:5113–5132. doi:10.1016/0016-7037(95)00358-4

    Article  CAS  Google Scholar 

  • LaForce MJ, Fendorf SE, Li GC, Rosenzweig RF (1999) Redistribution of trace elements from contaminated sediments of Lake Coeur d’ Alene during oxygenation. J Environ Qual 28:1195–1200

    Article  CAS  Google Scholar 

  • Latrille C, Elsass F, vanOort F, Denaix L (2001) Physical speciation of trace metals in Fe-Mn concretions from a rendzic lithosol developed on Sinemurian limestones (France). Geoderma 100:127–146. doi:10.1016/S0016-7061(00)00083-5

    Article  CAS  Google Scholar 

  • Liu F, Colombo C, Adamo P, He JZ, Violante A (2002) Trace elements in manganese-iron nodules from a Chinese alfisol. Soil Sci Soc Am J 66:661–670

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Zhang G, Sun B, Fitz W, Zhang H, McGrath SP (2002) In situ fixation of metals in soils using bauxite residue: chemical assessment. Environ Pollut 118:435–443. doi:10.1016/S0269-7491(01)00294-9

    Article  CAS  Google Scholar 

  • Lombi E, Hamon RE, Wieshammer G, McLaughlin MJ, McGrath SP (2004) Assessment of the use of industrial by-products to remediate a copper and arsenic-contaminated soil. J Environ Qual 33:902–910

    Article  CAS  Google Scholar 

  • Manceau A, Tamura N, Celestre RS, Marcus MA, MacDowell AA, Celestre RS, Sublett RE, Sposito G, Padmore HA (2002a) Deciphering Ni sequestration in soil ferromanganese nodules by combining X-ray fluorescence, absorption, and diffraction at micrometer scale of resolution. Am Miner 87:1494–1499

    CAS  Google Scholar 

  • Manceau A, Marcus MA, Tamura N (2002b) Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques. In: Fenter P, Sturchio NC (eds) Applications of synchrotron radiation in low-temperature geochemistry and environmental science. Reviews in Mineralogy and Geochemistry, vol. 49, Mineralogical Society of America, Washington, pp 341–428

  • Manceau A, Tamura N, Celestre RS, MacDowell AA, Geoffroy N, Sposito G, Padmore HA (2003) Molecular-scale speciation of Zn and Ni in soil ferromanganese nodules from loess soils of the Mississippi basin. Environ Sci Technol 37:75–80. doi:10.1021/es025748r

    Article  CAS  Google Scholar 

  • Manceau A, Lanson M, Geoffroy N (2007) Natural speciation of Ni, Zn Ba and As in ferromanganese coatings on quartz using X-ray fluorescence, absorption, and diffraction. Geochim Cosmochim Acta 71:95–128. doi:10.1016/j.gca.2006.08.036

    Article  CAS  Google Scholar 

  • Manning BA, Fendorf S, Bostick B, Suarez DL (2002) Arsenic (III) oxidation and arsenic (V) adsorption reactions on synthetic birnessite. Environ Sci Technol 36:976–981

    Article  CAS  Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • McKenzie RM (1975) An electron microprobe study of the relationships between heavy metals and manganese and iron in soils and ocean floor nodules. Aust J Soil Res 13:177–188. doi:10.1071/SR9750177

    Article  CAS  Google Scholar 

  • McKenzie RM (1980) The adsorption of lead and other heavy metals on oxides of manganese and iron. Aust J Soil Res 18:61–73. doi:10.1071/SR9800061

    Article  CAS  Google Scholar 

  • McKenzie RM (1989) Manganese oxides and hydroxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments, 2nd edn, SSSA Book Series. 1. SSSA, Madison, pp 439–465

  • Mench MJ, Didier VL, Loffler M, Gomez A, Masson P (1994) A mimicked in situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. J Environ Qual 23:58–63

    Article  CAS  Google Scholar 

  • Mudhoo A, Garg VK, Wang S (2012) Removal of heavy metals by biosorption. Environ Chem Lett 10:109–117

    Article  CAS  Google Scholar 

  • Neaman A, Mouélé F, Trolard F, Bourrié G (2004) Improved methods for selective dissolution of Mn oxides: applications for studying trace element associations. Appl Geochem 19:973–979. doi:10.1016/j.apgeochem.2003.12.002

    Article  CAS  Google Scholar 

  • Neaman A, Martinez CE, Trolard F, Bourrie G (2008) Trace elements associations with Fe-Mn oxides in soil nodules: comparison of selective dissolution with electron probe microanalysis. Appl Geochem 23:778–782. doi:10.1016/j.apgeochem.2007.12.025

    Article  CAS  Google Scholar 

  • Ojanuga AG, Lee GB (1973) Characteristics, distribution, and genesis of nodules and concretions in soils of the southwestern upland of Nigeria. Soil Sci 116:282–291

    Article  Google Scholar 

  • Palumbo B, Bellanca A, Neri R, Roe MJ (2001) Trace metal partitioning in Fe-Mn nodules from Sicilian soils, Italy. Chem Geol 173:257–269. doi:10.1016/S0009-2541(00)00284-9

    Google Scholar 

  • Pawluk S, Dumanski J (1973) Ferruginous concretions in a poorly drained soil of Alberta. Soil Sci Soc Am Proc 37:124–127

    Article  CAS  Google Scholar 

  • Phillippe WR, Blevins RL, Barnhisel RI, Bailey HH (1972) Distribution of concretions from selected soils of the inner bluegrass region of Kentucky. Soil Sci Soc Am Proc 36:171–173

    Article  CAS  Google Scholar 

  • Puschenreiter M, Horak O, Friesl W, Hartl W (2005) Low-cost agricultural measures to reduce heavy metal transfer into the food chain—a review. Plant Soil Environ 51:1–11

    Google Scholar 

  • Ram H, Singh RP, Prasad J (2001) Chemical and mineralogical composition of Fe-Mn concretions and calcretes occurring in sodic soils of Eastern Uttar Pradesh. India Aust J Soil Res 39:641–648. doi:10.1071/SR98098

    Article  CAS  Google Scholar 

  • Rhoton FE, Bigham JM, Schulze DG (1993) Properties of iron-manganese nodules from a sequence of eroded fragipan soils. Soil Sci Soc Am J 57:1386–1392

    Article  CAS  Google Scholar 

  • Ross SJ, Franzmeer DP, Roth CB (1976) Mineralogy and chemistry of manganese oxides in some Indiana soils. Soil Sci Soc Am J 40:137–143

    Article  CAS  Google Scholar 

  • Sanz A, Garcia-Gonzalez MT, Vizcayno C, Rodriguez R (1996) Iron-manganese nodules in a semi-arid environment. Aust J Soil Res 34:623–634. doi:10.1071/SR9960623

    Article  CAS  Google Scholar 

  • Schwertmann U, Carlson L, Murad E (1987) Properties of iron oxides in two Finnish lakes in relation to the environment of their formation. Clay Clay Miner 35:297–304. doi:10.1346/CCMN.1987.0350407

    Article  CAS  Google Scholar 

  • Sidhu PS, Sehagal JL, Sinha MK, Randhawa NS (1977) Composition and mineralogy of ironmanganese concretions from some soils of the Indo-Gangetic Plain in northhwest India. Geoderma 18:241–249. doi:10.1016/0016-7061(77)90034-9

    Article  CAS  Google Scholar 

  • Singh B, Gilkes RJ (1996) Nature and properties of iron rich glaebules and mottles from southwest Australian soils. Geoderma 71:95–120. doi:10.1016/0016-7061(95)00092-5

    Article  CAS  Google Scholar 

  • Stipp SLS, Hansen M, Kristensen R, Hochella MF Jr, Bennedsen L, Dideriksen K, Balic-Zunic T, Leonard D, Mathieu H-J (2002) Behaviour of Fe-oxides relevant to contaminant uptake in the environment. Chem Geol 190:321–337. doi:10.1016/S0009-2541(02)00123-7

    Article  CAS  Google Scholar 

  • Sun X, Doner HE, Zavarin M (1999) Spectroscopy study of arsenite [AsIII] oxidation on Mn-substituted goethite. Clays Clay Miner 47:474–480

    Article  CAS  Google Scholar 

  • Tan WF, Liu F, Li YH, Hu YO, Huang QY (2006) Elemental composition and geochemical characteristics of iron-manganese nodules in main soils of China. Pedosphere 16:72–81. doi:10.1016/S1002-0160(06)60028-3

    Article  CAS  Google Scholar 

  • Tokashiki Y, Dixon JB, Golden DC (1986) Manganese oxide analysis in soils by combined X-ray diffraction and selective dissolution methods. Soil Sci Soc Am J 50:1079–1084

    Article  CAS  Google Scholar 

  • Tokashiki Y, Hentona T, Shimo M, Vidhana Arachchi LP (2003) Improvement of the successive selective dissolution procedure for the separation of birnessite, lithiophorite and goethite in soil manganese nodules. Soil Sci Soc Am J 67:837–843

    Article  CAS  Google Scholar 

  • Tzou YM, Wang MK, Loeppert RH (2003) Sorption of phosphate and Cr(VI) by Fe(III) and Cr(III) hydroxides. Arch Environ Contam Toxicol 44:445–453. doi:10.1007/s00244-002-2090-6

    Article  CAS  Google Scholar 

  • Vepraskas MJ, Lindbo DL (2012) Redoximorphic features as related to soil hydrology and hydric soils. In: Lin H (ed) Hydropedology: synergistic integration of soil science and hydrology. Academic Press, Elsevier BV, London, Amsterdam, pp 143–172

    Google Scholar 

  • Vidhana Arachchi LP, Tokashiki Y, Baba S (2004) Mineralogical characteristics and micromorphological observations of brittle/soft Fe/Mn concretions from Okinawan soils. Clay Clay Miner 52:462–472. doi:10.1346/CCMN.2004.0520407

    Article  Google Scholar 

  • Vodyanitskii YN (2006) The composition of Fe-Mn nodules as determined by synchrotron X-ray analysis (review of publications). Eurasian Soil Sci 39:147–156

    Article  Google Scholar 

  • Wheeting LC (1936) Shot soils of western Washington State. Soil Sci 41:35–45

    Article  CAS  Google Scholar 

  • White GN, Dixon JB (1996) Iron and manganese distribution in nodules from a young Texas vertisol. Soil Sci Soc Am J 60:1254–1262

    Article  CAS  Google Scholar 

  • Winters E (1938) Ferromanganiferous concretions from podzolic soils. Soil Sci 46:35–45. doi:10.1097/00010694-193807000-00005

    Article  Google Scholar 

  • Zaidelman FR, Nikiforova AS (1998) Manganese-iron concretions in soils and their change under the effect if gleyifi cation on parent materials of different genesis. Eurasian Soil Sci 31:817–825

    Google Scholar 

  • Zhang M, Karathanasis AD (1997) Characterization of iron-manganese concretions in Kentuky alfisols with perched water tables. Clay Clay Miner 45:428–439. doi:10.1346/CCMN.1997.0450312

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dionisios Gasparatos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasparatos, D. Sequestration of heavy metals from soil with Fe–Mn concretions and nodules. Environ Chem Lett 11, 1–9 (2013). https://doi.org/10.1007/s10311-012-0386-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-012-0386-y

Keywords

Navigation