Skip to main content
Log in

Presurgical electromagnetic functional brain mapping in refractory focal epilepsy

Präoperative elektromagnetische funktionelle Hirnkartierung bei refrakträrer fokaler Epilepsie

  • Leitthema
  • Published:
Zeitschrift für Epileptologie Aims and scope Submit manuscript

Abstract

Background

Electroencephalography (EEG) and magnetoencephalography (MEG) are neurophysiological methods used to investigate noninvasively the spatial, temporal, and spectral dynamics of human brain functions.

Objectives

This article reviews data on the use of EEG and MEG for presurgical functional brain mapping in patients with refractory focal epilepsy. The focus is on the localization of the primary sensorimotor (SM1) cortex as well as the verbal language and episodic memory functions.

Material and methods

The English literature was reviewed based on a PubMed search. Relevant references in the selected papers were also included.

Results

Presurgical MEG functional localization of the SM1 cortex generally overlaps with intracranial mapping. MEG allows for determination of hemispheric verbal (receptive and expressive) language dominance in neurosurgical patients with a high degree of concordance with the intracarotid amobarbital test. MEG represents an interesting technique for assessing postoperative memory outcome in patients with mesial temporal lobe epilepsy. Very few studies have evaluated the yield of EEG in these three clinical indications. High-density EEG might be a promising technique that needs further validation.

Conclusion

MEG is a validated and robust technique for noninvasive functional mapping of the SM1 cortex and verbal language hemispheric dominance in patients with refractory focal epilepsy. Current data also suggest that MEG is a promising technique for assessing the hemispheric dominance of memory function. Further studies are needed to assess the clinical added value of high-density EEG in these clinical indications.

Zusammenfassung

Hintergrund

Elektroenzephalographie (EEG) und Magnetenzephalographie (MEG) sind neurophysiologische Methoden, die für die nichtinvasive Untersuchung der räumlichen, zeitlichen und spektralen Dynamik der menschlichen Hirnfunktion eingesetzt werden.

Zielsetzung

Der vorgestellte Artikel bietet einen Überblick über die Anwendung von EEG und MEG für das prächirurgische funktionelle Mapping bei Patienten mit refraktärer fokaler Epilepsie. Der Fokus liegt auf der Lokalisation des primären sensomotorischen Kortex (SM1) sowie der verbalen Sprach- und episodischen Gedächtnisfunktion.

Material und Methoden

Auf einer PubMed-Suche basierend wurden entsprechende Artikel in englischer Sprache ausgewertet. Darüber hinaus wurden relevante Zitate in den ausgewählten Artikeln in die Auswertung einbezogen.

Ergebnisse

Die prächirurgische funktionelle Lokalisation des SM1-Kortex mittels MEG überlappt i. Allg. mit den Ergebnissen des intrakraniellen Mappings. Die MEG ermöglicht die Bestimmung der hemisphärischen (rezeptiven und expressiven) Sprachdominanz neurochirurgischer Patienten mit einem hohen Grad an Konkordanz mit dem Intrakarotis-Amobarbital-Test (Wada-Test). MEG-Untersuchungen sind auch für die Evaluation der postoperativen Gedächtnisfunktion bei Patienten mit mesialer Temporallappenepilepsie interessant. In sehr wenigen Studien wurde bisher der Nutzen des EEG im Rahmen dieser 3 Indikationen untersucht. Die High-Density-EEG stellt eine vielversprechende Technik dar, die jedoch weitere Validierung benötigt.

Schlussfolgerungen

Die MEG ist eine validierte und robuste Technik für die nichtinvasive funktionelle Lokalisation des SM1-Kortex sowie der verbalen hemisphärischen Sprachdominanz bei Patienten mit refraktären fokalen Epilepsien. Die Studienlage weist zudem darauf hin, dass die MEG eine vielversprechende Technik zur Bestimmung der hemisphärischen Gedächtnisdominanz darstellen könnte. Weitere Untersuchungen zum zusätzlichen Nutzen der High-Density-EEG im Rahmen dieser Indikationen sind erforderlich.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alessio A, Pereira FR, Sercheli MS et al (2013) Brain plasticity for verbal and visual memories in patients with mesial temporal lobe epilepsy and hippocampal sclerosis: an fMRI study. Hum Brain Mapp 34:186–199

    Article  PubMed  Google Scholar 

  2. Bagic AI (2011) Disparities in clinical magnetoencephalography practice in the United States: a survey-based appraisal. J Clin Neurophysiol 28:341–347

    Article  PubMed  Google Scholar 

  3. Bagic AI, Bowyer SM, Kirsch HE et al (2017) American Clinical MEG Society (ACMEGS) Position Statement #2: The Value of Magnetoencephalography (MEG)/Magnetic Source Imaging (MSI) in Noninvasive Presurgical Mapping of Eloquent Cortices of Patients Preparing for Surgical Interventions. J Clin Neurophysiol. https://doi.org/10.1097/WNP.0000000000000366

    Article  PubMed  Google Scholar 

  4. Bartsch AJ, Homola G, Biller A et al (2006) Diagnostic functional MRI: illustrated clinical applications and decision-making. J Magn Reson Imaging 23:921–932

    Article  PubMed  Google Scholar 

  5. Bast T, Wright T, Boor R et al (2007) Combined EEG and MEG analysis of early somatosensory evoked activity in children and adolescents with focal epilepsies. Clin Neurophysiol 118:1721–1735

    Article  PubMed  CAS  Google Scholar 

  6. Baxendale S, Thompson PJ, Duncan JS (2008) The role of the Wada test in the surgical treatment of temporal lobe epilepsy: an international survey. Epilepsia 49:715–720 (discussion 720–715)

    Article  PubMed  Google Scholar 

  7. Beisteiner R, Erdler M, Teichtmeister C et al (1997) Magnetoencephalography may help to improve functional MRI brain mapping. Eur J Neurosci 9:1072–1077

    Article  PubMed  CAS  Google Scholar 

  8. Beisteiner R, Gomiscek G, Erdler M et al (1995) Comparing localization of conventional functional magnetic resonance imaging and magnetoencephalography. Eur J Neurosci 7:1121–1124

    Article  PubMed  CAS  Google Scholar 

  9. Bonelli SB, Powell RH, Yogarajah M et al (2010) Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection. Brain 133:1186–1199

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boto E, Meyer SS, Shah V et al (2017) A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers. Neuroimage 149:404–414

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bourguignon M, De Tiège X, Op de Beeck M et al (2011) Functional motor-cortex mapping using corticokinematic coherence. Neuroimage 55:1475–1479

    Article  PubMed  Google Scholar 

  12. Bourguignon M, Jousmäki V, Marty B et al (2013) Comprehensive functional mapping scheme for non-invasive primary sensorimotor cortex mapping. Brain Topogr 26:511–523

    Article  PubMed  Google Scholar 

  13. Bowyer SM, Moran JE, Weiland BJ et al (2005) Language laterality determined by MEG mapping with MR-FOCUSS. Epilepsy Behav 6:235–241

    Article  PubMed  Google Scholar 

  14. Breier JI, Simos PG, Wheless JW et al (2001) Language dominance in children as determined by magnetic source imaging and the intracarotid amobarbital procedure: a comparison. J Child Neurol 16:124–130

    Article  PubMed  CAS  Google Scholar 

  15. Breier JI, Simos PG, Zouridakis G et al (1999) Language dominance determined by magnetic source imaging: a comparison with the Wada procedure. Neurology 53:938–945

    Article  PubMed  CAS  Google Scholar 

  16. Burgess RC, Funke ME, Bowyer SM et al (2011) American Clinical Magnetoencephalography Society Clinical Practice Guideline 2: presurgical functional brain mapping using magnetic evoked fields. J Clin Neurophysiol 28:355–361

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cheyne D, Bostan AC, Gaetz W et al (2007) Event-related beamforming: a robust method for presurgical functional mapping using MEG. Clin Neurophysiol 118:1691–1704

    Article  PubMed  Google Scholar 

  18. Chou N, Serafini S, Muh CR (2018) Cortical language areas and plasticity in pediatric patients with epilepsy: a review. Pediatr Neurol 78:3–12

    Article  PubMed  Google Scholar 

  19. Collinge S, Prendergast G, Mayers ST et al (2017) Pre-surgical mapping of eloquent cortex for paediatric epilepsy surgery candidates: evidence from a review of advanced functional neuroimaging. Seizure 52:136–146

    Article  PubMed  Google Scholar 

  20. D’esposito M, Deouell LY, Gazzaley A (2003) Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 4:863–872

    Article  PubMed  CAS  Google Scholar 

  21. De Ribaupierre S, Wang A, Hayman-Abello S (2012) Language mapping in temporal lobe epilepsy in children: special considerations. Epilepsy Res Treat 2012:837036

    PubMed  PubMed Central  Google Scholar 

  22. De Tiège X, Connelly A, Liegeois F et al (2009) Influence of motor functional magnetic resonance imaging on the surgical management of children and adolescents with symptomatic focal epilepsy. Neurosurgery 64:856–864 (discussion 864)

    Article  PubMed  Google Scholar 

  23. De Tiège X, Lundqvist D, Beniczky S et al (2017) Current clinical magnetoencephalography practice across europe: are we closer to use MEG as an established clinical tool? Seizure 50:53–59

    Article  PubMed  Google Scholar 

  24. Doss RC, Zhang W, Risse GL et al (2009) Lateralizing language with magnetic source imaging: validation based on the Wada test. Epilepsia 50:2242–2248

    Article  PubMed  Google Scholar 

  25. Duncan JS, Winston GP, Koepp MJ et al (2016) Brain imaging in the assessment for epilepsy surgery. Lancet Neurol 15:420–433

    Article  PubMed  Google Scholar 

  26. Findlay AM, Ambrose JB, Cahn-Weiner DA et al (2012) Dynamics of hemispheric dominance for language assessed by magnetoencephalographic imaging. Ann Neurol 71:668–686

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fisher AE, Furlong PL, Seri S et al (2008) Interhemispheric differences of spectral power in expressive language: a MEG study with clinical applications. Int J Psychophysiol 68:111–122

    Article  PubMed  Google Scholar 

  28. Forster MT, Hattingen E, Senft C et al (2011) Navigated transcranial magnetic stimulation and functional magnetic resonance imaging: advanced adjuncts in preoperative planning for central region tumors. Neurosurgery 68:1317–1324 (discussion 1324–1315)

    Article  PubMed  Google Scholar 

  29. Gaetz W, Cheyne D, Rutka JT et al (2009) Presurgical localization of primary motor cortex in pediatric patients with brain lesions by the use of spatially filtered magnetoencephalography. Neurosurgery 64:177–185 (discussion ons186)

    Google Scholar 

  30. Gleissner U, Helmstaedter C, Schramm J et al (2004) Memory outcome after selective amygdalohippocampectomy in patients with temporal lobe epilepsy: one-year follow-up. Epilepsia 45:960–962

    Article  PubMed  Google Scholar 

  31. Gleissner U, Helmstaedter C, Schramm J et al (2002) Memory outcome after selective amygdalohippocampectomy: a study in 140 patients with temporal lobe epilepsy. Epilepsia 43:87–95

    Article  PubMed  Google Scholar 

  32. Goldenholz DM, Ahlfors SP, Hamalainen MS et al (2009) Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography. Hum Brain Mapp 30:1077–1086

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hämäläinen M, Hari R, Ilmoniemi RJ et al (1993) Magnetoencephalography: theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  Google Scholar 

  34. Hamberger MJ, Cole J (2011) Language organization and reorganization in epilepsy. Neuropsychol Rev 21:240–251

    Article  PubMed  PubMed Central  Google Scholar 

  35. Helmstaedter C, Kurthen M, Lux S et al (2003) Chronic epilepsy and cognition: a longitudinal study in temporal lobe epilepsy. Ann Neurol 54:425–432

    Article  PubMed  Google Scholar 

  36. Hirata M, Kato A, Taniguchi M et al (2004) Determination of language dominance with synthetic aperture magnetometry: comparison with the Wada test. Neuroimage 23:46–53

    Article  PubMed  Google Scholar 

  37. Inoue T, Shimizu H, Nakasato N et al (1999) Accuracy and limitation of functional magnetic resonance imaging for identification of the central sulcus: comparison with magnetoencephalography in patients with brain tumors. Neuroimage 10:738–748

    Article  PubMed  CAS  Google Scholar 

  38. Kamada K, Houkin K, Takeuchi F et al (2003) Visualization of the eloquent motor system by integration of MEG, functional, and anisotropic diffusion-weighted MRI in functional neuronavigation. Surg Neurol 59:352–361 (discussion 361–352)

    Article  PubMed  Google Scholar 

  39. Kamada K, Sawamura Y, Takeuchi F et al (2007) Expressive and receptive language areas determined by a non-invasive reliable method using functional magnetic resonance imaging and magnetoencephalography. Neurosurgery 60:296–305 (discussion 305–296)

    Article  PubMed  Google Scholar 

  40. Klamer S, Elshahabi A, Lerche H et al (2015) Differences between MEG and high-density EEG source localizations using a distributed source model in comparison to fMRI. Brain Topogr 28:87–94

    Article  PubMed  Google Scholar 

  41. Kober H, Moller M, Nimsky C et al (2001) New approach to localize speech relevant brain areas and hemispheric dominance using spatially filtered magnetoencephalography. Hum Brain Mapp 14:236–250

    Article  PubMed  CAS  Google Scholar 

  42. Kober H, Nimsky C, Moller M et al (2001) Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Neuroimage 14:1214–1228

    Article  PubMed  CAS  Google Scholar 

  43. Korvenoja A, Kirveskari E, Aronen HJ et al (2006) Sensorimotor cortex localization: comparison of magnetoencephalography, functional MR imaging, and intraoperative cortical mapping. Radiology 241:213–222

    Article  PubMed  Google Scholar 

  44. Krieg SM, Shiban E, Droese D et al (2012) Predictive value and safety of intraoperative neurophysiological monitoring with motor evoked potentials in glioma surgery. Neurosurgery 70:1060–1070 (discussion 1070–1061)

    Article  PubMed  Google Scholar 

  45. Lascano AM, Grouiller F, Genetti M et al (2014) Surgically relevant localization of the central sulcus with high-density somatosensory-evoked potentials compared with functional magnetic resonance imaging. Neurosurgery 74:517–526

    Article  PubMed  Google Scholar 

  46. Liegeois F, Cross JH, Gadian DG et al (2006) Role of fMRI in the decision-making process: epilepsy surgery for children. J Magn Reson Imaging 23:933–940

    Article  PubMed  Google Scholar 

  47. Lin PT, Berger MS, Nagarajan SS (2006) Motor field sensitivity for preoperative localization of motor cortex. J Neurosurg 105:588–594

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu AK, Dale AM, Belliveau JW (2002) Monte Carlo simulation studies of EEG and MEG localization accuracy. Hum Brain Mapp 16:47–62

    Article  PubMed  CAS  Google Scholar 

  49. Maestu F, Campo P, Garcia-Morales I et al (2009) Biomagnetic profiles of verbal memory success in patients with mesial temporal lobe epilepsy. Epilepsy Behav 16:527–533

    Article  PubMed  CAS  Google Scholar 

  50. Makela JP (2014) Bioelectric measurements: magnetoencephalography. In: Brahme A (ed) Comprehensive biomedical physics. Elsevier, Amsterdam, pp 47–72

    Chapter  Google Scholar 

  51. Makela JP, Forss N, Jaaskelainen J et al (2006) Magnetoencephalography in neurosurgery. Neurosurgery 59:493–510 (discussion 510–491)

    Article  PubMed  Google Scholar 

  52. Makela JP, Kirveskari E, Seppa M et al (2001) Three-dimensional integration of brain anatomy and function to facilitate intraoperative navigation around the sensorimotor strip. Hum Brain Mapp 12:180–192

    Article  PubMed  CAS  Google Scholar 

  53. Morioka T, Mizushima A, Yamamoto T et al (1995) Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials. Neuroradiology 37:526–530

    Article  PubMed  CAS  Google Scholar 

  54. Morioka T, Yamamoto T, Mizushima A et al (1995) Comparison of magnetoencephalography, functional MRI, and motor evoked potentials in the localization of the sensory-motor cortex. Neurol Res 17:361–367

    Article  PubMed  CAS  Google Scholar 

  55. Nagarajan S, Kirsch H, Lin P et al (2008) Preoperative localization of hand motor cortex by adaptive spatial filtering of magnetoencephalography data. J Neurosurg 109:228–237

    Article  PubMed  Google Scholar 

  56. Paiva WS, Fonoff ET, Marcolin MA et al (2012) Cortical mapping with navigated transcranial magnetic stimulation in low-grade glioma surgery. Neuropsychiatr Dis Treat 8:197–201

    Article  PubMed  PubMed Central  Google Scholar 

  57. Papanicolaou AC, Rezaie R, Narayana S et al (2017) On the relative merits of invasive and non-invasive pre-surgical brain mapping: New tools in ablative epilepsy surgery. Epilepsy Res. https://doi.org/10.1016/j.eplepsyres.2017.07.002

    Article  PubMed  Google Scholar 

  58. Papanicolaou AC, Rezaie R, Narayana S et al (2014) Is it time to replace the Wada test and put awake craniotomy to sleep? Epilepsia 55:629–632

    Article  PubMed  Google Scholar 

  59. Papanicolaou AC, Simos PG, Breier JI et al (1999) Magnetoencephalographic mapping of the language-specific cortex. J Neurosurg 90:85–93

    Article  PubMed  CAS  Google Scholar 

  60. Papanicolaou AC, Simos PG, Castillo EM et al (2004) Magnetocephalography: a noninvasive alternative to the Wada procedure. J Neurosurg 100:867–876

    Article  PubMed  Google Scholar 

  61. Perrine K, Gershengorn J, Brown ER et al (1993) Material-specific memory in the intracarotid amobarbital procedure. Neurology 43:706–711

    Article  PubMed  CAS  Google Scholar 

  62. Picht T, Schmidt S, Brandt S et al (2011) Preoperative functional mapping for rolandic brain tumor surgery: comparison of navigated transcranial magnetic stimulation to direct cortical stimulation. Neurosurgery 69:581–588 (discussion 588)

    Article  PubMed  Google Scholar 

  63. Picht T, Schmidt S, Woitzik J et al (2011) Navigated brain stimulation for preoperative cortical mapping in paretic patients: case report of a hemiplegic patient. Neurosurgery 68:E1475–E1480 (discussion E1480)

    Article  PubMed  Google Scholar 

  64. Pirmoradi M, Beland R, Nguyen DK et al (2010) Language tasks used for the presurgical assessment of epileptic patients with MEG. Epileptic Disord 12:97–108

    PubMed  Google Scholar 

  65. Powell GE, Polkey CE, Canavan AG (1987) Lateralisation of memory functions in epileptic patients by use of the sodium amytal (Wada) technique. J Neurol Neurosurg Psychiatr 50:665–672

    Article  CAS  Google Scholar 

  66. Powell HW, Richardson MP, Symms MR et al (2007) Reorganization of verbal and nonverbal memory in temporal lobe epilepsy due to unilateral hippocampal sclerosis. Epilepsia 48:1512–1525

    Article  PubMed  PubMed Central  Google Scholar 

  67. Puce A, Hamalainen MS (2017) A review of issues related to data acquisition and analysis in EEG/MEG studies. Brain Sci 7:E58. https://doi.org/10.3390/brainsci7060058

    Article  PubMed  Google Scholar 

  68. Quigg M (2015) Taking sides: physician’s perceptions on the use of the Wada test in epilepsy surgery-Q-PULSE survey commentary. Epilepsy Curr 15:225

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rausch R, Babb TL, Engel J Jr. et al (1989) Memory following intracarotid amobarbital injection contralateral to hippocampal damage. Arch Neurol 46:783–788

    Article  PubMed  CAS  Google Scholar 

  70. Rezaie R, Narayana S, Schiller K et al (2014) Assessment of hemispheric dominance for receptive language in pediatric patients under sedation using magnetoencephalography. Front Hum Neurosci 8:657

    Article  PubMed  PubMed Central  Google Scholar 

  71. Riggs L, Moses SN, Bardouille T et al (2009) A complementary analytic approach to examining medial temporal lobe sources using magnetoencephalography. Neuroimage 45:627–642

    Article  PubMed  Google Scholar 

  72. Roberts TP, Rowley HA (1997) Mapping of the sensorimotor cortex: functional MR and magnetic source imaging. AJNR Am J Neuroradiol 18:871–880

    PubMed  CAS  Google Scholar 

  73. Rosenow F, Luders H (2001) Presurgical evaluation of epilepsy. Brain 124:1683–1700

    Article  PubMed  CAS  Google Scholar 

  74. Rouleau I, Robidoux J, Labrecque R et al (1997) Effect of focus lateralization on memory assessment during the intracarotid amobarbital procedure. Brain Cogn 33:224–241

    Article  PubMed  CAS  Google Scholar 

  75. Salmelin R (2007) Clinical neurophysiology of language: the MEG approach. Clin Neurophysiol 118:237–254

    Article  PubMed  Google Scholar 

  76. Schiffbauer H, Berger MS, Ferrari P et al (2002) Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with intraoperative sensory and motor mapping. J Neurosurg 97:1333–1342

    Article  PubMed  Google Scholar 

  77. Schwartz TH (2007) Neurovascular coupling and epilepsy: hemodynamic markers for localizing and predicting seizure onset. Epilepsy Curr 7:91–94

    Article  PubMed  PubMed Central  Google Scholar 

  78. Seghier ML, Patel E, Prejawa S et al (2016) The PLORAS database: a data repository for predicting language outcome and recovery after stroke. Neuroimage 124:1208–1212

    Article  PubMed  PubMed Central  Google Scholar 

  79. Shimizu H, Nakasato N, Mizoi K et al (1997) Localizing the central sulcus by functional magnetic resonance imaging and magnetoencephalography. Clin Neurol Neurosurg 99:235–238

    Article  PubMed  CAS  Google Scholar 

  80. Sidhu MK, Stretton J, Winston GP et al (2013) A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy. Brain 136:1868–1888

    Article  PubMed  PubMed Central  Google Scholar 

  81. Simos PG, Papanicolaou AC, Breier JI et al (1999) Localization of language-specific cortex by using magnetic source imaging and electrical stimulation mapping. J Neurosurg 91:787–796

    Article  PubMed  CAS  Google Scholar 

  82. Solomon J, Boe S, Bardouille T (2015) Reliability for non-invasive somatosensory cortex localization: Implications for pre-surgical mapping. Clin Neurol Neurosurg 139:224–229

    Article  PubMed  Google Scholar 

  83. Stufflebeam SM, Tanaka N, Ahlfors SP (2009) Clinical applications of magnetoencephalography. Hum Brain Mapp 30:1813–1823

    Article  PubMed  Google Scholar 

  84. Sutherling WW, Crandall PH, Darcey TM et al (1988) The magnetic and electric fields agree with intracranial localizations of somatosensory cortex. Neurology 38:1705–1714

    Article  PubMed  CAS  Google Scholar 

  85. Towle VL, Khorasani L, Uftring S et al (2003) Noninvasive identification of human central sulcus: a comparison of gyral morphology, functional MRI, dipole localization, and direct cortical mapping. Neuroimage 19:684–697

    Article  PubMed  Google Scholar 

  86. Trimmel K, Sachsenweger J, Lindinger G et al (2017) Lateralization of language function in epilepsy patients: a high-density scalp-derived event-related potentials (ERP) study. Clin Neurophysiol 128:472–479

    Article  PubMed  Google Scholar 

  87. Trotta N, Goldman S, Legros B et al (2011) Metabolic evidence for episodic memory plasticity in the nonepileptic temporal lobe of patients with mesial temporal epilepsy. Epilepsia 52:2003–2012

    Article  PubMed  Google Scholar 

  88. Van Poppel M, Wheless JW, Clarke DF et al (2012) Passive language mapping with magnetoencephalography in pediatric patients with epilepsy. J Neurosurg Pediatr 10:96–102

    Article  PubMed  Google Scholar 

  89. Ver Hoef LW, Sawrie S, Killen J et al (2008) Left mesial temporal sclerosis and verbal memory: a magnetoencephalography study. J Clin Neurophysiol 25:1–6

    Article  PubMed  Google Scholar 

  90. Vitikainen AM, Lioumis P, Paetau R et al (2009) Combined use of non-invasive techniques for improved functional localization for a selected group of epilepsy surgery candidates. Neuroimage 45:342–348

    Article  PubMed  Google Scholar 

  91. Wada J, Rasmussen T (1960) Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. J Neurosurg 17:266–282

    Article  Google Scholar 

  92. Willemse RB, De Munck JC, Van’t Ent D et al (2007) Magnetoencephalographic study of posterior tibial nerve stimulation in patients with intracranial lesions around the central sulcus. Neurosurgery 61:1209–1217 (discussion 1217–1208)

    Article  PubMed  Google Scholar 

  93. Willemse RB, De Munck JC, Verbunt JP et al (2010) Topographical organization of mu and Beta band activity associated with hand and foot movements in patients with perirolandic lesions. Open Neuroimag J 4:93–99

    Article  PubMed  PubMed Central  Google Scholar 

  94. Willemse RB, Hillebrand A, Ronner HE et al (2016) Magnetoencephalographic study of hand and foot sensorimotor organization in 325 consecutive patients evaluated for tumor or epilepsy surgery. Neuroimage Clin 10:46–53

    Article  PubMed  Google Scholar 

  95. Wyllie E, Naugle R, Chelune G et al (1991) Intracarotid amobarbital procedure: II. Lateralizing value in evaluation for temporal lobectomy. Epilepsia 32:865–869

    Article  PubMed  CAS  Google Scholar 

  96. Yousry TA, Schmid UD, Alkadhi H et al (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120(Pt 1):141–157

    Article  PubMed  Google Scholar 

Download references

Funding

T. Coolen is a Clinical Master Specialist Applicant to a PhD at the Fonds de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium). A.M. Dumitrescu benefits from financial support of the Fonds Erasme (Research Convention “Les Voies du Savoir”, Brussels, Belgium). M. Bourguignon is supported by the program Attract of Innoviris (grant 2015-BB2B-10), by the Spanish Ministry of Economy and Competitiveness (grant PSI2016-77175-P), and by the Marie Skłodowska-Curie Action of the European Commission (grant 743562). X. De Tiège is Postdoctorate Clinical Master Specialist at the FRS-FNRS. The MEG project at the CUB Hôpital Erasme is financially supported by the Fonds Erasme (Research Convention “Les Voies du Savoir”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier De Tiège.

Ethics declarations

Conflict of interest

X. De Tiège is a consultant for Elekta MEGIN. T. Coolen, A.M. Dumitrescu, M. Bourguignon, V. Wens and C. Urbain declare that they have no competing interests.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Additional information

T. Coolen and A.M. Dumitrescu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coolen, T., Dumitrescu, A.M., Bourguignon, M. et al. Presurgical electromagnetic functional brain mapping in refractory focal epilepsy. Z. Epileptol. 31, 203–212 (2018). https://doi.org/10.1007/s10309-018-0189-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10309-018-0189-7

Keywords

Schlüsselwörter

Navigation