Skip to main content
Log in

Bedeutung des Mikrobioms für Adipositas und Glukosestoffwechsel

Role of the microbiome in obesity and glucose metabolism

  • Leitthema
  • Published:
Gynäkologische Endokrinologie Aims and scope

Zusammenfassung

Metabolische Erkrankungen wie Diabetes mellitus Typ 2 und Adipositas führen zu Veränderungen im mikrobiellen Ökosystem des Darms, sowohl auf kompositioneller als auch funktioneller Ebene. Nach über 10 Jahren intensiver Forschung scheint eine kausale Beteiligung der Mikrobiota an der Entstehung und Progression von Diabetes mellitus Typ 2 und Adipositas möglich, wobei die zugrunde liegenden Mechanismen noch immer unklar sind. Vermutet wird, dass Mikroorganismen allein oder in Gemeinschaften (Dysbiose) den Insulin- und Glukosestoffwechsel, die Energieextraktion aus der Nahrung sowie die Barriere- und Immunfunktion des Darms beeinflussen. Auf dieser Grundlage werden derzeit mikrobielle Therapien wie Stuhltransplantationen bei metabolischen Erkrankungen erprobt. Allerdings ist die Studienlage noch lückenhaft und widersprüchlich, sodass es weiterer klinischer Validierung bedarf.

Abstract

Metabolic diseases such as type 2 diabetes mellitus and obesity are associated with compositional and functional changes in the intestinal microbiota. After more than 10 years of intense research, evidence is emerging for a causal role of the intestinal microbiota in initiation and progression of these adverse metabolic conditions. However, underlying mechanisms are still unknown. Presumably, microorganisms alone or in consortia (dysbiosis) regulate energy metabolism and insulin sensitivity, energy extraction from diet, and intestinal barrier and immune function. In this context, microbial treatment options including fecal microbiota transplantation are discussed for metabolic disease. Nevertheless, inconclusive and incomplete study results require further clinical and experimental validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Backhed F, Manchester JK, Semenkovich CF et al (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104:979–984

    Article  CAS  Google Scholar 

  2. Bazanella M, Maier TV, Clavel T et al (2017) Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. Am J Clin Nutr 106:1274–1286

    CAS  PubMed  Google Scholar 

  3. Berg G, Rybakova D, Fischer D et al (2020) Microbiome definition re-visited: old concepts and new challenges. Microbiome 8:103

    Article  Google Scholar 

  4. Bharti R, Grimm DG (2021) Current challenges and best-practice protocols for microbiome analysis. Brief Bioinformatics 22(1):178–193. https://doi.org/10.1093/bib/bbz155

    Article  CAS  PubMed  Google Scholar 

  5. Burkitt DP (1969) Related disease—related cause? Lancet 2:1229–1231

    Article  CAS  Google Scholar 

  6. Carding S, Verbeke K, Vipond DT et al (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26:26191

    PubMed  Google Scholar 

  7. Chen X, Yang W (2015) Branched-chain amino acids and the association with type 2 diabetes. J Diabetes Investig 6:369–370

    Article  Google Scholar 

  8. Clavel T, Lagkouvardos I, Hiergeist A (2016) Microbiome sequencing: challenges and opportunities for molecular medicine. Expert Rev Mol Diagn 16:795–805

    Article  CAS  Google Scholar 

  9. de Groot P, Scheithauer T, Bakker GJ et al (2020) Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut 69:502–512

    Article  Google Scholar 

  10. Duncan SH, Lobley GE, Holtrop G et al (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond) 32:1720–1724

    Article  CAS  Google Scholar 

  11. Galligan JJ (2018) Beneficial actions of microbiota-derived tryptophan metabolites. Neurogastroenterol Motil. https://doi.org/10.1111/nmo.13283

    Article  PubMed  Google Scholar 

  12. Gensollen T, Iyer SS, Kasper DL et al (2016) How colonization by microbiota in early life shapes the immune system. Science 352:539–544

    Article  CAS  Google Scholar 

  13. He Y, Wu W, Zheng HM et al (2018) Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med 24:1532–1535

    Article  CAS  Google Scholar 

  14. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  Google Scholar 

  15. InterAct Consortium (2015) Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct study and a meta-analysis of prospective studies. Diabetologia 58:1394–1408

    Article  Google Scholar 

  16. Koh A, Backhed F (2020) From association to causality: the role of the gut microbiota and its functional products on host metabolism. Mol Cell 78:584–596

    Article  CAS  Google Scholar 

  17. Kootte RS, Levin E, Salojarvi J et al (2017) Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab 26:611–619.e6

    Article  CAS  Google Scholar 

  18. Kubeck R, Bonet-Ripoll C, Hoffmann C et al (2016) Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Mol Metab 5:1162–1174

    Article  Google Scholar 

  19. Li SS, Zhu A, Benes V et al (2016) Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 352:586–589

    Article  CAS  Google Scholar 

  20. Maier L, Pruteanu M, Kuhn M et al (2018) Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555:623–628

    Article  CAS  Google Scholar 

  21. Nauck MA, Meier JJ (2018) Incretin hormones: their role in health and disease. Diabetes Obes Metab 20(1):5–21

    Article  CAS  Google Scholar 

  22. Newgard CB, An J, Bain JR et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326

    Article  CAS  Google Scholar 

  23. Nicholson JK, Holmes E, Kinross J et al (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267

    Article  CAS  Google Scholar 

  24. O’toole PW, Jeffery IB (2015) Gut microbiota and aging. Science 350:1214–1215

    Article  Google Scholar 

  25. Perry RJ, Peng L, Barry NA et al (2016) Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 534:213–217

    Article  CAS  Google Scholar 

  26. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  Google Scholar 

  27. Qin J, Li Y, Cai Z et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60

    Article  CAS  Google Scholar 

  28. Reitmeier S, Kiessling S, Clavel T et al (2020) Arrhythmic gut microbiome signatures predict risk of type 2 diabetes. Cell Host Microbe 28:258–272.e6

    Article  CAS  Google Scholar 

  29. Ridaura VK, Faith JJ, Rey FE et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214

    Article  Google Scholar 

  30. Rinott E, Youngster I, Yaskolka Meir A et al (2021) Effects of diet-modulated autologous fecal microbiota transplantation on weight regain. Gastroenterology 160:158–173.e10

    Article  CAS  Google Scholar 

  31. Rodriguez JM, Murphy K, Stanton C et al (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26:26050

    PubMed  Google Scholar 

  32. Sender R, Fuchs S, Milo R (2016) Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164:337–340

    Article  CAS  Google Scholar 

  33. Tims S, Derom C, Jonkers DM et al (2013) Microbiota conservation and BMI signatures in adult monozygotic twins. ISME J 7:707–717

    Article  CAS  Google Scholar 

  34. Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  CAS  Google Scholar 

  35. Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  Google Scholar 

  36. Udayappan S, Manneras-Holm L, Chaplin-Scott A et al (2016) Oral treatment with eubacterium hallii improves insulin sensitivity in db/db mice. NPJ Biofilms Microbiomes 2:16009

    Article  Google Scholar 

  37. Vrieze A, Van Nood E, Holleman F et al (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913–916.e7

    Article  CAS  Google Scholar 

  38. Wang TJ, Larson MG, Vasan RS et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17:448–453

    Article  Google Scholar 

  39. Wortelboer K, Nieuwdorp M, Herrema H (2019) Fecal microbiota transplantation beyond clostridioides difficile infections. EBioMedicine 44:716–729

    Article  Google Scholar 

  40. Wu GD, Compher C, Chen EZ et al (2016) Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 65:63–72

    Article  CAS  Google Scholar 

  41. Yu EW, Gao L, Stastka P et al (2020) Fecal microbiota transplantation for the improvement of metabolism in obesity: The FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Med 17:e1003051

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Haller.

Ethics declarations

Interessenkonflikt

M. Ecker und D. Haller geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Herbert Fluhr, Graz

Christoph Keck, Hamburg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ecker, M., Haller, D. Bedeutung des Mikrobioms für Adipositas und Glukosestoffwechsel. Gynäkologische Endokrinologie 20, 230–235 (2022). https://doi.org/10.1007/s10304-022-00467-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10304-022-00467-1

Schlüsselwörter

Keywords

Navigation