Skip to main content
Log in

Implantationsversagen: Embryo, Endometrium oder beides?

Implantation failure: embryo, endometrium, or both?

  • Leitthema
  • Published:
Gynäkologische Endokrinologie Aims and scope

Zusammenfassung

Hintergrund

Trotz Fortschritten insbesondere im Bereich des IVF-Labor leiden etwa 10 % der Kinderwunschpaare unter einem rezidivierenden Implantationsversagen (RIF). Neben allgemeinen Faktoren der Mutter werden Eigenschaften des Embryos und des Endometriums als Ursache diskutiert.

Ziel der Arbeit

Überblick über die Bedeutung der aktuellen diagnostischen Verfahren zur Untersuchung des Embryos sowie des Endometriums bei Patientinnen mit RIF.

Material und Methoden

Aktuelle Literaturrecherche und Zusammenfassung relevanter Studien und Übersichtsbeiträge zum Thema.

Ergebnisse

Neben Risikofaktoren wie hereditären und erworbenen Thrombophilien oder anatomischen Auffälligkeiten sind embryonale und endometriale Faktoren in den Blickpunkt gerückt. Die chromosomale Zusammensetzung und morphologische Entwicklung des Embryos können heute detaillierter untersucht werden. Mit neuen Techniken kann zudem die Implantationsfähigkeit des Endometriums genetisch, aber auch immunologisch bzw. infektiologisch analysiert werden. Als neue Risikofaktoren für RIF wird die chronische Endometritis sowie Veränderungen der natürlichen Killerzellen im Endometrium diskutiert.

Schlussfolgerungen

Kinderwunschpaare sollten vor einer Behandlung über die Erfolgsraten aufgeklärt werden. Mehrere erfolglose Kinderwunschbehandlungen stellen neben der finanziellen auch eine extreme psychische Belastung dar. Viele der aktuellen Risikofaktoren für RIF wurden lediglich an einer kleinen Studienpopulation untersucht. Vor Anwendung in der klinischen Routine sollten neue diagnostische Verfahren möglichst in prospektiven Studien mit ausreichender Fallzahl und einheitlich definiertem Patientinnenkollektiv untersucht werden. Nach aktuellem Stand müssen embryonale wie auch endometriale Faktoren für die Entstehung eines RIF verantwortlich gemacht werden.

Abstract

Background

Despite advanced techniques in reproductive medicine, about 10% of couples treated with assisted reproductive technology (ART) experience recurrent implantation failure (RIF). Besides other general maternal factors, the role of the embryo itself and the endometrium are now discussed.

Objectives

The diagnostic possibilities to examine the embryo and the endometrium in RIF patients are reviewed and discussed.

Materials and methods

Current, relevant research and review articles concerning embryological and endometrial factors are discussed.

Results

In addition to risk factors such as hereditary and acquired thrombophilia or anatomical abnormalities, embryonic and endometrial factors have come into focus. Nowadays, the chromosomal composition and morphological development of the embryo can be examined in more detail. Using new techniques, the properties of the endometrium for implantation can be analyzed from a genetically and immunological/infectiological perspective. Chronic endometritis and alterations of natural killer cells in the endometrium are discussed as new risk factors for RIF.

Conclusions

Couples should be educated about success rates before ART treatment. Several unsuccessful fertility treatments are not only a financial but also an extreme psychological burden. Many of the current risk factors for RIF have been studied only on the basis of a small study population. Before use in clinical routine, new diagnostic procedures should be investigated in prospective studies with a sufficient number of cases and a uniformly defined patient collective. According to the current state of knowledge, both embryonic and endometrial factors can be responsible for the development of RIF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Thornhill AR, deDie-Smulders CE, Geraedts JP, Harper JC, Harton GL, Lavery SA et al (2005) ESHRE PGD Consortium ‚Best practice guidelines for clinical preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS)‘. Hum Reprod 20(1):35–48

    Article  PubMed  CAS  Google Scholar 

  2. Polanski LT, Baumgarten MN, Quenby S, Brosens J, Campbell BK, Raine-Fenning NJ (2014) What exactly do we mean by ‚recurrent implantation failure‘? A systematic review and opinion. Reprod Biomed Online 28(4):409–423

    Article  PubMed  Google Scholar 

  3. Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C et al (2009) Chromosome instability is common in human cleavage-stage embryos. Nat Med 15(5):577–583

    Article  PubMed  CAS  Google Scholar 

  4. Simon A, Laufer N (2012) Assessment and treatment of repeated implantation failure (RIF). J Assist Reprod Genet 29(11):1227–1239

    Article  PubMed  PubMed Central  Google Scholar 

  5. Koler M, Achache H, Tsafrir A, Smith Y, Revel A, Reich R (2009) Disrupted gene pattern in patients with repeated in vitro fertilization (IVF) failure. Hum Reprod 24(10):2541–2548

    Article  PubMed  CAS  Google Scholar 

  6. Macklon NS, Brosens JJ (2014) The human endometrium as a sensor of embryo quality. Biol Reprod 91(4):98

    Article  PubMed  CAS  Google Scholar 

  7. Koot YE, Teklenburg G, Salker MS, Brosens JJ, Macklon NS (2012) Molecular aspects of implantation failure. Biochim Biophys Acta 1822(12):1943–1950

    Article  PubMed  CAS  Google Scholar 

  8. Das M, Holzer HE (2012) Recurrent implantation failure: gamete and embryo factors. Fertil Steril 97(5):1021–1027

    Article  PubMed  Google Scholar 

  9. Kadi S, Wiesing U (2016) The German IVF register as an instrument to document assisted reproductive technologies. Geburtshilfe Frauenheilkd 76(6):680–684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Demirol A, Gurgan T (2004) Effect of treatment of intrauterine pathologies with office hysteroscopy in patients with recurrent IVF failure. Reprod Biomed Online 8(5):590–594

    Article  PubMed  Google Scholar 

  11. Zeyneloglu HB, Arici A, Olive DL (1998) Adverse effects of hydrosalpinx on pregnancy rates after in vitro fertilization—embryo transfer. Fertil Steril 70(3):492–499

    Article  PubMed  CAS  Google Scholar 

  12. Meyer WR, Castelbaum AJ, Somkuti S, Sagoskin AW, Doyle M, Harris JE et al (1997) Hydrosalpinges adversely affect markers of endometrial receptivity. Hum Reprod 12(7):1393

    Article  PubMed  CAS  Google Scholar 

  13. Broughton DE, Moley KH (2017) Obesity and female infertility: potential mediators of obesity’s impact. Fertil Steril 107(4):840–847

    Article  PubMed  Google Scholar 

  14. Penzias AS (2012) Recurrent IVF failure: other factors. Fertil Steril 97(5):1033–1038

    Article  PubMed  Google Scholar 

  15. Rubio C, Bellver J, Rodrigo L, Bosch E, Mercader A, Vidal C et al (2013) Preimplantation genetic screening using fluorescence in situ hybridization in patients with repetitive implantation failure and advanced maternal age: two randomized trials. Fertil Steril 99(5):1400–1407

    Article  PubMed  Google Scholar 

  16. Pehlivan T, Rubio C, Rodrigo L, Romero J, Remohi J, Simon C et al (2003) Impact of preimplantation genetic diagnosis on IVF outcome in implantation failure patients. Reprod Biomed Online 6(2):232–237

    Article  PubMed  CAS  Google Scholar 

  17. Toth B, Wurfel W, Bohlmann M, Zschocke J, Rudnik-Schoneborn S, Nawroth F et al (2018) Recurrent miscarriage: diagnostic and therapeutic procedures. Guideline of the DGGG, OEGGG and SGGG (S2k-level, AWMF registry number 015/050). Geburtshilfe Frauenheilkd 78(4):364–381

    Article  PubMed  PubMed Central  Google Scholar 

  18. Blockeel C, Schutyser V, De Vos A, Verpoest W, De Vos M, Staessen C et al (2008) Prospectively randomized controlled trial of PGS in IVF/ICSI patients with poor implantation. Reprod Biomed Online 17(6):848–854

    Article  PubMed  Google Scholar 

  19. Yakin K, Ata B, Ercelen N, Balaban B, Urman B (2008) The effect of preimplantation genetic screening on the probability of live birth in young women with recurrent implantation failure; a nonrandomized parallel group trial. Eur J Obstet Gynecol Reprod Biol 140(2):224–229

    Article  PubMed  Google Scholar 

  20. Pontre JC, Ryan JP, Tan A, Hart RJ (2018) The interval transfer of a frozen-thawed embryo is more successful than a fresh embryo transfer for women undergoing IVF with recurrent implantation failure after cleavage stage embryo biopsy. Aust N Z J Obstet Gynaecol. https://doi.org/10.1111/ajo.12798

    Article  PubMed  Google Scholar 

  21. Valdes CT, Schutt A, Simon C (2017) Implantation failure of endometrial origin: it is not pathology, but our failure to synchronize the developing embryo with a receptive endometrium. Fertil Steril 108(1):15–18

    Article  PubMed  Google Scholar 

  22. Boiso I, Veiga A, Edwards RG (2002) Fundamentals of human embryonic growth in vitro and the selection of high-quality embryos for transfer. Reprod Biomed Online 5(3):328–350

    Article  PubMed  CAS  Google Scholar 

  23. Milki AA, Hinckley MD, Gebhardt J, Dasig D, Westphal LM, Behr B (2002) Accuracy of day 3 criteria for selecting the best embryos. Fertil Steril 77(6):1191–1195

    Article  PubMed  Google Scholar 

  24. De Placido G, Wilding M, Strina I, Alviggi E, Alviggi C, Mollo A et al (2002) High outcome predictability after IVF using a combined score for zygote and embryo morphology and growth rate. Hum Reprod 17(9):2402–2409

    Article  PubMed  Google Scholar 

  25. Fisch JD, Rodriguez H, Ross R, Overby G, Sher G (2001) The Graduated Embryo Score (GES) predicts blastocyst formation and pregnancy rate from cleavage-stage embryos. Hum Reprod 16(9):1970–1975

    Article  PubMed  CAS  Google Scholar 

  26. Scott L, Alvero R, Leondires M, Miller B (2000) The morphology of human pronuclear embryos is positively related to blastocyst development and implantation. Hum Reprod 15(11):2394–2403

    Article  PubMed  CAS  Google Scholar 

  27. Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB (2000) Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril 73(6):1155–1158

    Article  PubMed  CAS  Google Scholar 

  28. Rienzi L, Gracia C, Maggiulli R, LaBarbera AR, Kaser DJ, Ubaldi FM et al (2017) Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update 23(2):139–155

    PubMed  Google Scholar 

  29. Capalbo A, Rienzi L, Cimadomo D, Maggiulli R, Elliott T, Wright G et al (2014) Correlation between standard blastocyst morphology, euploidy and implantation: an observational study in two centers involving 956 screened blastocysts. Hum Reprod 29(6):1173–1181

    Article  PubMed  Google Scholar 

  30. Irani M, Reichman D, Robles A, Melnick A, Davis O, Zaninovic N et al (2017) Morphologic grading of euploid blastocysts influences implantation and ongoing pregnancy rates. Fertil Steril 107(3):664–670

    Article  PubMed  Google Scholar 

  31. Van den Abbeel E, Balaban B, Ziebe S, Lundin K, Cuesta MJ, Klein BM et al (2013) Association between blastocyst morphology and outcome of single-blastocyst transfer. Reprod Biomed Online 27(4):353–361

    Article  PubMed  Google Scholar 

  32. Hill MJ, Richter KS, Heitmann RJ, Graham JR, Tucker MJ, DeCherney AH et al (2013) Trophectoderm grade predicts outcomes of single-blastocyst transfers. Fertil Steril 99(5):1283–1289.e1

    Article  PubMed  Google Scholar 

  33. Ahlstrom A, Westin C, Wikland M, Hardarson T (2013) Prediction of live birth in frozen-thawed single blastocyst transfer cycles by pre-freeze and post-thaw morphology. Hum Reprod 28(5):1199–1209

    Article  PubMed  CAS  Google Scholar 

  34. Alfarawati S, Fragouli E, Colls P, Stevens J, Gutierrez-Mateo C, Schoolcraft WB et al (2011) The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril 95(2):520–524

    Article  PubMed  Google Scholar 

  35. Rubio I, Galan A, Larreategui Z, Ayerdi F, Bellver J, Herrero J et al (2014) Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril 102(5):1287–1294e5

    Article  PubMed  Google Scholar 

  36. Kissin DM, Kawwass JF, Monsour M, Boulet SL, Session DR, Jamieson DJ et al (2014) Assisted hatching: trends and pregnancy outcomes, United States, 2000–2010. Fertil Steril 102(3):795–801

    Article  PubMed  PubMed Central  Google Scholar 

  37. Carney SK, Das S, Blake D, Farquhar C, Seif MM, Nelson L (2012) Assisted hatching on assisted conception (in vitro fertilisation (IVF)) and intracytoplasmic sperm injection (ICSI). Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD001894.pub5

    Article  PubMed  Google Scholar 

  38. Martins WP, Rocha IA, Ferriani RA, Nastri CO (2011) Assisted hatching of human embryos: a systematic review and meta-analysis of randomized controlled trials. Hum Reprod Update 17(4):438–453

    Article  PubMed  Google Scholar 

  39. Lash GE, Bulmer JN (2011) Do uterine natural killer (uNK) cells contribute to female reproductive disorders? J Reprod Immunol 88(2):156–164

    Article  PubMed  CAS  Google Scholar 

  40. Bulmer JN, Williams PJ, Lash GE (2010) Immune cells in the placental bed. Int J Dev Biol 54(2–3):281–294

    Article  PubMed  Google Scholar 

  41. Bulmer JN, Morrison L, Longfellow M, Ritson A, Pace D (1991) Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum Reprod 6(6):791–798

    Article  PubMed  CAS  Google Scholar 

  42. Moffett A, Shreeve N (2015) First do no harm: uterine natural killer (NK) cells in assisted reproduction. Hum Reprod 30(7):1519–1525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Moffett A, Colucci F (2014) Uterine NK cells: active regulators at the maternal-fetal interface. J Clin Invest 124(5):1872–1879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Robson A, Harris LK, Innes BA, Lash GE, Aljunaidy MM, Aplin JD et al (2012) Uterine natural killer cells initiate spiral artery remodeling in human pregnancy. FASEB J 26(12):4876–4885

    Article  PubMed  CAS  Google Scholar 

  45. Lyall F, Robson SC, Bulmer JN (2013) Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: relationship to clinical outcome. Hypertension 62(6):1046–1054

    Article  PubMed  CAS  Google Scholar 

  46. Quenby S, Nik H, Innes B, Lash G, Turner M, Drury J et al (2009) Uterine natural killer cells and angiogenesis in recurrent reproductive failure. Hum Reprod 24(1):45–54

    Article  PubMed  CAS  Google Scholar 

  47. Chen X, Mariee N, Jiang L, Liu Y, Wang CC, Li TC et al (2017) Measurement of uterine natural killer cell percentage in the periimplantation endometrium from fertile women and women with recurrent reproductive failure: establishment of a reference range. Am J Obstet Gynecol 217(6):680e1–680e6

    Article  Google Scholar 

  48. Kuon RJ, Weber M, Heger J, Santillan I, Vomstein K, Bar C et al (2017) Uterine natural killer cells in patients with idiopathic recurrent miscarriage. Am J Reprod Immunol. https://doi.org/10.1111/aji.12721

    Article  PubMed  Google Scholar 

  49. Seshadri S, Sunkara SK (2014) Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis. Hum Reprod Update 20(3):429–438

    Article  PubMed  Google Scholar 

  50. Ledee-Bataille N, Dubanchet S, Coulomb-L’hermine A, Durand-Gasselin I, Frydman R, Chaouat G (2004) A new role for natural killer cells, interleukin (IL)-12, and IL-18 in repeated implantation failure after in vitro fertilization. Fertil Steril 81(1):59–65

    Article  PubMed  CAS  Google Scholar 

  51. Tuckerman E, Mariee N, Prakash A, Li TC, Laird S (2010) Uterine natural killer cells in peri-implantation endometrium from women with repeated implantation failure after IVF. J Reprod Immunol 87(1–2):60–66

    Article  PubMed  CAS  Google Scholar 

  52. Lash GE, Bulmer JN, Li TC, Innes BA, Mariee N, Patel G et al (2016) Standardisation of uterine natural killer (uNK) cell measurements in the endometrium of women with recurrent reproductive failure. J Reprod Immunol 116:50–59

    Article  PubMed  CAS  Google Scholar 

  53. Gomaa MF, Elkholy AG, El-Said MM, Abdel-Salam NE (2014) Combined oral prednisolone and heparin versus heparin: the effect on peripheral NK cells and clinical outcome in patients with unexplained recurrent miscarriage. A double-blind placebo randomized controlled trial. Arch Gynecol Obstet 290(4):757–762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Fawzy M, Shokeir T, El-Tatongy M, Warda O, El-Refaiey AA, Mosbah A (2008) Treatment options and pregnancy outcome in women with idiopathic recurrent miscarriage: a randomized placebo-controlled study. Arch Gynecol Obstet 278(1):33–38

    Article  PubMed  CAS  Google Scholar 

  55. Tempfer CB, Kurz C, Bentz EK, Unfried G, Walch K, Czizek U et al (2006) A combination treatment of prednisone, aspirin, folate, and progesterone in women with idiopathic recurrent miscarriage: a matched-pair study. Fertil Steril 86(1):145–148

    Article  PubMed  CAS  Google Scholar 

  56. Tang AW, Alfirevic Z, Turner MA, Drury JA, Small R, Quenby S (2013) A feasibility trial of screening women with idiopathic recurrent miscarriage for high uterine natural killer cell density and randomizing to prednisolone or placebo when pregnant. Hum Reprod 28(7):1743–1752

    Article  PubMed  CAS  Google Scholar 

  57. Granato D, Blum S, Rossle C, Le Boucher J, Malnoe A, Dutot G (2000) Effects of parenteral lipid emulsions with different fatty acid composition on immune cell functions in vitro. JPEN J Parenter Enteral Nutr 24(2):113–118

    Article  PubMed  CAS  Google Scholar 

  58. Roussev RG, Ng SC, Coulam CB (2007) Natural killer cell functional activity suppression by intravenous immunoglobulin, intralipid and soluble human leukocyte antigen-G. Am J Reprod Immunol 57(4):262–269

    Article  PubMed  CAS  Google Scholar 

  59. Roussev RG, Acacio B, Ng SC, Coulam CB (2008) Duration of intralipid’s suppressive effect on NK cell’s functional activity. Am J Reprod Immunol 60(3):258–263

    Article  PubMed  Google Scholar 

  60. Roussev RG, Dons’koi BV, Stamatkin C, Ramu S, Chernyshov VP, Coulam CB et al (2013) Preimplantation factor inhibits circulating natural killer cell cytotoxicity and reduces CD69 expression: implications for recurrent pregnancy loss therapy. Reprod Biomed Online 26(1):79–87

    Article  PubMed  CAS  Google Scholar 

  61. Mayer K, Meyer S, Reinholz-Muhly M, Maus U, Merfels M, Lohmeyer J et al (2003) Short-time infusion of fish oil-based lipid emulsions, approved for parenteral nutrition, reduces monocyte proinflammatory cytokine generation and adhesive interaction with endothelium in humans. J Immunol 171(9):4837–4843

    Article  PubMed  CAS  Google Scholar 

  62. Coulam CB, Acacio B (2012) Does immunotherapy for treatment of reproductive failure enhance live births? Am J Reprod Immunol 67(4):296–304

    Article  PubMed  CAS  Google Scholar 

  63. Moraru M, Carbone J, Alecsandru D, Castillo-Rama M, Garcia-Segovia A, Gil J et al (2012) Intravenous immunoglobulin treatment increased live birth rate in a Spanish cohort of women with recurrent reproductive failure and expanded CD56(+) cells. Am J Reprod Immunol 68(1):75–84

    Article  PubMed  CAS  Google Scholar 

  64. Meng L, Lin J, Chen L, Wang Z, Liu M, Liu Y et al (2016) Effectiveness and potential mechanisms of intralipid in treating unexplained recurrent spontaneous abortion. Arch Gynecol Obstet 294(1):29–39

    Article  PubMed  CAS  Google Scholar 

  65. Stephenson MD, Kutteh WH, Purkiss S, Librach C, Schultz P, Houlihan E et al (2010) Intravenous immunoglobulin and idiopathic secondary recurrent miscarriage: a multicentered randomized placebo-controlled trial. Hum Reprod 25(9):2203–2209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ata B, Tan SL, Shehata F, Holzer H, Buckett W (2011) A systematic review of intravenous immunoglobulin for treatment of unexplained recurrent miscarriage. Fertil Steril 95(3):1080–1085.e1-2

    Article  PubMed  CAS  Google Scholar 

  67. Ensom MH, Stephenson MD (2011) A two-center study on the pharmacokinetics of intravenous immunoglobulin before and during pregnancy in healthy women with poor obstetrical histories. Hum Reprod 26(9):2283–2288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Winger EE, Reed JL (2008) Treatment with tumor necrosis factor inhibitors and intravenous immunoglobulin improves live birth rates in women with recurrent spontaneous abortion. Am J Reprod Immunol 60(1):8–16

    Article  PubMed  CAS  Google Scholar 

  69. Zhang T, Huang C, Du Y, Lian R, Mo M, Zeng Y et al (2017) Successful treatment with intrauterine delivery of dexamethasone for repeated implantation failure. Am J Reprod Immunol. https://doi.org/10.1111/aji.12766

    Article  PubMed  Google Scholar 

  70. Bouet PE, El Hachem H, Monceau E, Gariepy G, Kadoch IJ, Sylvestre C (2016) Chronic endometritis in women with recurrent pregnancy loss and recurrent implantation failure: prevalence and role of office hysteroscopy and immunohistochemistry in diagnosis. Fertil Steril 105(1):106–110

    Article  PubMed  Google Scholar 

  71. Cicinelli E, Matteo M, Tinelli R, Lepera A, Alfonso R, Indraccolo U et al (2015) Prevalence of chronic endometritis in repeated unexplained implantation failure and the IVF success rate after antibiotic therapy. Hum Reprod 30(2):323–330

    Article  PubMed  Google Scholar 

  72. Kitaya K, Matsubayashi H, Takaya Y, Nishiyama R, Yamaguchi K, Takeuchi T et al (2017) Live birth rate following oral antibiotic treatment for chronic endometritis in infertile women with repeated implantation failure. Am J Reprod Immunol 78(5):e12719

    Article  CAS  Google Scholar 

  73. Liu B, Mariee N, Laird S, Smith J, Li J, Li TC (2014) The prognostic value of uNK cell count and histological dating in the mid-luteal phase of women with reproductive failure. Eur J Obstet Gynecol Reprod Biol 181:171–175

    Article  PubMed  Google Scholar 

  74. Bayer-Garner IB, Korourian S (2001) Plasma cells in chronic endometritis are easily identified when stained with syndecan-1. Mod Pathol 14(9):877–879

    Article  PubMed  CAS  Google Scholar 

  75. Liu Y, Chen X, Huang J, Wang CC, Yu MY, Laird S et al (2018) Comparison of the prevalence of chronic endometritis as determined by means of different diagnostic methods in women with and without reproductive failure. Fertil Steril 109(5):832–839

    Article  PubMed  Google Scholar 

  76. Cicinelli E, Resta L, Nicoletti R, Zappimbulso V, Tartagni M, Saliani N (2005) Endometrial micropolyps at fluid hysteroscopy suggest the existence of chronic endometritis. Hum Reprod 20(5):1386–1389

    Article  PubMed  Google Scholar 

  77. Cicinelli E, Matteo M, Trojano G, Mitola PC, Tinelli R, Vitagliano A et al (2018) Chronic endometritis in patients with unexplained infertility: Prevalence and effects of antibiotic treatment on spontaneous conception. Am J Reprod Immunol. https://doi.org/10.1111/aji.12782

    Article  PubMed  Google Scholar 

  78. Moreno I, Franasiak JM (2017) Endometrial microbiota-new player in town. Fertil Steril 108(1):32–39

    Article  PubMed  Google Scholar 

  79. Selman H, Mariani M, Barnocchi N, Mencacci A, Bistoni F, Arena S et al (2007) Examination of bacterial contamination at the time of embryo transfer, and its impact on the IVF/pregnancy outcome. J Assist Reprod Genet 24(9):395–399

    Article  PubMed  PubMed Central  Google Scholar 

  80. Moreno I, Codoner FM, Vilella F, Valbuena D, Martinez-Blanch JF, Jimenez-Almazan J et al (2016) Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol 215(6):684–703

    Article  PubMed  Google Scholar 

  81. Noyes RW, Hertig AT, Rock J (1975) Dating the endometrial biopsy. Am J Obstet Gynecol 122(2):262–263

    Article  PubMed  CAS  Google Scholar 

  82. Murray MJ, Meyer WR, Zaino RJ, Lessey BA, Novotny DB, Ireland K et al (2004) A critical analysis of the accuracy, reproducibility, and clinical utility of histologic endometrial dating in fertile women. Fertil Steril 81(5):1333–1343

    Article  PubMed  Google Scholar 

  83. Diaz-Gimeno P, Horcajadas JA, Martinez-Conejero JA, Esteban FJ, Alama P, Pellicer A et al (2011) A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril 95(1):50–60e1–15

    Article  PubMed  CAS  Google Scholar 

  84. Ruiz-Alonso M, Blesa D, Diaz-Gimeno P, Gomez E, Fernandez-Sanchez M, Carranza F et al (2013) The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure. Fertil Steril 100(3):818–824

    Article  PubMed  Google Scholar 

  85. Tan J, Kan A, Hitkari J, Taylor B, Tallon N, Warraich G et al (2018) The role of the endometrial receptivity array (ERA) in patients who have failed euploid embryo transfers. J Assist Reprod Genet 35(4):683–692

    Article  PubMed  CAS  Google Scholar 

  86. Simon C, Vladimirov IK, Castillon Cortes G, Ortega I, Cabanillas S, Vidal C et al (2016) Prospective, randomized study of the endometrial receptivity analysis (ERA) test in the infertility work-up to guide personalized embryo transfer versus fresh transfer or deferred embryo transfer. Fertil Steril 106(3):e46–e47

    Article  Google Scholar 

  87. Lucas ES, Dyer NP, Murakami K, Lee YH, Chan YW, Grimaldi G et al (2016) Loss of endometrial plasticity in recurrent pregnancy loss. Stem Cells 34(2):346–356

    Article  PubMed  CAS  Google Scholar 

  88. Nastri CO, Lensen SF, Gibreel A, Raine-Fenning N, Ferriani RA, Bhattacharya S et al (2015) Endometrial injury in women undergoing assisted reproductive techniques. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD009517.pub2

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.-J. Kuon.

Ethics declarations

Interessenkonflikt

R.-J. Kuon und B. Toth sind Gesellschafter der Reprognostics GbR. K. Vomstein gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

T. Strowitzki, Heidelberg

G. Griesinger, Lübeck

H. Kentenich, Berlin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vomstein, K., Toth, B. & Kuon, RJ. Implantationsversagen: Embryo, Endometrium oder beides?. Gynäkologische Endokrinologie 16, 160–168 (2018). https://doi.org/10.1007/s10304-018-0200-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10304-018-0200-4

Schlüsselwörter

Keywords

Navigation