Skip to main content
Log in

Fiber-based tunable dispersion compensation

  • Published:
Journal of Optical and Fiber Communications Reports

Abstract

Tunable dispersion has been implemented in various technology platforms, including fiber gratings, planar waveguides, thin film etalons, and bulk optic technologies. This paper will focus on fiber grating based tunable dispersion compensation, because fiber gratings are at present one of the best developed TDC technologies available. The paper is divided into three parts. In the first part we describe grating based TDC technologies and discuss their advantages and disadvantages. We focus on thermally tuned linearly chirped fiber gratings, as these have to date been the most successful grating technology for 40 Gbit/s. We also compare grating TDCs to two other prominent tunable dispersion technologies: thin film etalons and planar waveguide ring resonators. In the second section we describe the techniques used to fabricate high performance dispersion compensation gratings as well as the theory of the primary defect of fiber grating dispersion compensation: group delay ripple (GDR). In the third section we describe the telecom system related issues for tunable gratings, including characterization of grating performance, tunability requirements and results from actual system trials using tunable FBGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • S. Ramachandran, S. Ghalmi, S. Chandrasekhar, Fellow, IEEE, I. Ryazansky, M.F. Yan, F.V. Dimarcello, W.A. Reed, and P. Wisk, "Tunable Dispersion Compensators Utilizing Higher Order Mode Fibers", IEEE Photon. Technol. Lett. 15 (5), 727-729 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  • B.J. Eggleton, A. Ahuja, P.S. Westbrook, J.A. Rogers, P. Kuo, T.N. Nielsen, and B. Mikkelsen, "Integrated tunable fiber gratings for dispersion management in high-bit rate systems", J. Lightwave Technol. 18, 1418-1432 (2000).

    Article  ADS  Google Scholar 

  • K.O. Hill, Y. Fujii, D.C. Johnson, and B.S. Kawasaki, "Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).

    Article  ADS  Google Scholar 

  • R. Kashyap, Fiber Bragg Gratings (San Diego: Academic Press, 1999).

  • A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Boston: Artech House, 1999).

  • F. Ouellette, "Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides," Opt. Lett. 12, 847-849 (1987).

    ADS  Google Scholar 

  • R. Stubbe, B. Sahlgren, S. Sandgren, and A. Asseh, "Novel technique for writing long superstructured fiber Bragg gratings," Photosensitivity and quadratic nonlinearity in glass waveguides: fundamentals and applications, vol. 22, PD1-1 PD1-3 (1995).

  • M.J. Cole, W.H. Loh, R.I. Laming, M.N. Zervas, and S. Barcelos, "Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask," Electron. Lett. 31, 1488-1490 (1995).

    Article  Google Scholar 

  • M. Brienza, "Extended length embedded Bragg grating manufacturing method and arrangement," USA Patent 5066133: United Technologies, Hartford, Conn., 1991.

  • J.F. Brennan, D. LaBrake, G.A. Beauchesne, and R.P. Pepin, "Method for fabrication of in-line optical waveguide index grating of any length," USA Patent, 5912999: Minnesota Mining and Manufacturing Company, 1999.

  • J.F. Brennan, M.R. Matthews, W.V. Dower, D.J. Treadwell, W. Wang, J. Porque, and X.D. Fan, "Dispersion correction with a robust fiber grating over the full C-band at 10-Gbit/s rates with < 0.3-dB power penalties," IEEE Photon. Technol. Lett. 15, 1722-1724 (2003).

    Article  ADS  Google Scholar 

  • J.F. Brennan, P.M. Bungarden, C.E. Fisher, and R.M. Jennings, "Packaging to reduce thermal gradients along the length of long fiber gratings," IEEE Photon. Technol. Lett. 16, 156-158 (2004).

    Article  ADS  Google Scholar 

  • F. Ouellette, P.A. Krug, T. Stephens, G. Dhosi, and B.J. Eggleton, "Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings," Electron. Lett. 31, 899-901 (1995).

    Article  Google Scholar 

  • Y. Li, B. Zhu, C. Soccolich, L. Nelson, N. Litchinitser, and G. Hancin, "Multi-Channel High-Performance Tunable Dispersion Compensator for 40 Gbit/s Transmission Systems," Optical Fiber Communication Conference and Exhibition, Atlanta, GA, paper ThL4, pp. 517-519 (2003).

  • P.I. Reyes, M. Sumetsky, N.M. Litchinitser, and P.S. Westbrook, "Reduction of group delay ripple of multi-channel chirped fiber gratings using adiabatic UV correction," Opt. Express 12, 2676 (2004).

    Article  ADS  Google Scholar 

  • M. Ibsen, M.K. Durkin, M.J. Cole, and R.I. Laming, "Sinc-Sampled Fiber Bragg Gratings for Identical Multiple Wavelength Operation," IEEE Photon. Technol. Lett. 10, 842-844 (1998).

    Article  ADS  Google Scholar 

  • A.V. Buryak, K.Y. Kolossovski, and D.Y. Stepanov, "Optimization of refractive index sampling for multichannel fiber Bragg gratings," IEEE J. Quantum Electron. 39, 91-98 (2003).

    Article  ADS  Google Scholar 

  • J. Rothenberg, F. Babian, Z. Brodzeli, P. Chou, H. Li, Y. Li, J. Popelek, and R. Wilcox, "Phase-Only Sampling for Fabrication and Design of High Channel-Count Fiber Bragg Gratings," Technical Digest, Optical Fiber Communications Conference, Atlanta, GA, 2003, paper ThL3, pp. 516-517.

  • J. Lauzon, S. Thibault, J. Martin, and F. Ouellette, "Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient," Opt. Lett. 19 (23), 2027-2029 (1994).

    ADS  Google Scholar 

  • B.J. Eggleton, J.A. Rogers, P.S. Westbrook, and T.A. Strasser, "Electrically tunable power efficient dispersion compensating fiber Bragg grating," IEEE Photon. Technol. Lett. 11, 854-856 (1999).

    Article  ADS  Google Scholar 

  • S. Kannan, J.Z.Y. Guo, P.J. Lemaire, "Thermal stability analysis of UV-induced fiber gragg gratings", J. Lightwave Technol. 8, 1478-1483 (1997)

    Article  ADS  Google Scholar 

  • B.J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J.A. Rogers, P.S. Westbrook, T.N. Nielsen, S. Stulz, and K. Dreyer, "Tunable Dispersion Compensation in a 160-Gbit/s TDM System by a Voltage Controlled Chirped Fiber Bragg Grating," IEEE Photon. Technol. Lett. 12, 1022-1024 (2000).

    Article  ADS  Google Scholar 

  • S. Wielandy, P.S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, "Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fibre," Electron. Lett. 40, 690-691 (2004).

    Article  Google Scholar 

  • P.C. Hill and B.J. Eggleton, "Strain gradient chirp of fibre Bragg gratings," Electron. Lett. 30, 1172-1173 (1994).

    Article  Google Scholar 

  • M.M. Ohn, A.T. Alavie, R. Maaskant, M.G. Xu, F. Bilodeau, and K.O. Hill, "Tunable fiber grating dispersion using a piezoelectric stack," Technical Digest, Optical Fiber Communication Conference 1997, paper WJ3, pp. 155-156.

  • M.M. Ohn, A.T. Alavie, R. Maaskant, M.G. Xu, F. Bilodeau, and K.O. Hill, "Dispersion variable fibre Bragg grating using a piezoelectric stack," Electron. Lett. 32, 2000-2001 (1997).

    Article  Google Scholar 

  • Junhee Kim, Junkye Bae, Young-Geun Han, Sang Hyuck Kim, Je-Myung Jeong, and Sang Bae Lee, "Effectively tunable dispersion compensation based on chirped fiber Bragg gratings without central wavelength shift", Photon. Technol. Lett. IEEE 16 (3), 849-851 (March 2004).

    Article  ADS  Google Scholar 

  • M. Pacheco, A. Mendez, L.A. Zenteno, and F. Mendoza-Santoyo, "Chirping optical fibre Bragg gratings using tapered-thickness piezoelectric ceramic," Electron. Lett. 34, 2348-2349 (1998).

    Article  Google Scholar 

  • T. Imai, T. Komukai, and M. Nakazawa, "Dispersion Tuning of a Linearly Chirped Fiber Bragg Grating Without a Center Wavelength Shift by Applying a Strain Gradient," IEEE Photon. Technol. Lett. 10, 845-847 (1998).

    Article  ADS  Google Scholar 

  • X. Dong, P. Shum, N.Q. Ngo, C.C. Chan, J.H. Ng, and C. Zhao, "Largely tunable CFBG-based dispersion compensator with fixed center wavelength," Opt. Express 11, 2970-2974 (2003).

    Article  ADS  Google Scholar 

  • R. Caponi, E. Ciaramella, E. Riccardi, M. Schiano, T. Tambosso, G. Zaffiro, "Origin and system effects of polarization mode dispersion in chirped Bragg gratings", Fiber Int. Opt. 19, 295-309 (2000).

    Article  Google Scholar 

  • A.E. Willner, K.-M. Feng, J. Cai, S. Lee, J. Peng, and H. Sun, "Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings," IEEE J. Select. Topics Quantum Electron. 5, 1298-1311 (1999).

    Article  Google Scholar 

  • J.A.J. Fells, S.E. Kanellopoulos, P.J. Bennett, V. Baker, H.F.M. Priddle, W.S. Lee, A.J. Collar, C.B. Rogers, D.P. Goodchild, R. Feced, B.J. Pugh, S.J. Clements, and A. Hadjifotiou, "Twin fiber grating tunable dispersion compensator," IEEE Photon. Technol. Lett. 13, 984-986 (2001).

    Article  ADS  Google Scholar 

  • X.W. Shu, K. Sugden, and K. Byron, "Bragg-grating-based all-fiber distributed Gires-Tournois etalons", Opt. Lett. 28 (11), 881-883 (June 1 2003).

    ADS  Google Scholar 

  • S. Vorbeck and R. Leppla, "Dispersion and Dispersion Slope Tolerance of 160-Gbit/s Systems, Considering the Temperature Dependence of Chromatic Dispersion," IEEE Photon. Technol. Lett. 15 (10), 1470-1472 (Oct. 2003).

    Article  ADS  Google Scholar 

  • C.S. Goh, S.Y. Set, K. Taira, S.K. Khijwania, K. Kikuchi, "Nonlinearly strain-chirped fiber Bragg grating with an adjustable dispersion slope," IEEE Photon. Technol. Lett. 14 (5), 663-665 (May 2002).

    Article  ADS  Google Scholar 

  • C.S. Goh, S.Y. Set, and K. Kikuchi, "Design and Fabrication of a Tunable Dispersion-,slope Compensating Module Based on Strain-Chirped Fiber Bragg Grating," IEEE Photon. Technol. Lett. 16 (2), 524-526 (Feb. 2004).

    Article  MathSciNet  ADS  Google Scholar 

  • P.I. Reyes, N. Litchinitser, M. Sumetsky, and P.S. Westbrook, "160-Gbit/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater", IEEE Photon. Technol. Lett. 17 (4), 831-833 (2005).

    Article  ADS  Google Scholar 

  • S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, "Tunable Dispersion Slope Compensator With a Chirped Fiber Grating and a Divided Thin-Film Heater for 160-Gbit/s RZ Transmissions," IEEE Photon. Technol. Lett. 16 (4), 1095-1097 (April 2004).

    Article  ADS  Google Scholar 

  • P.S.J. Russell, "Bloch Wave Analysis of Dispersion and Pulse Propagation in Pure Distributed Feedback Structures," J. Mod. Opt. 38, 1599-1619 (1991).

    ADS  Google Scholar 

  • B.J. Eggleton, T. Stephens, P.A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, Electron. Lett. 32, 1610-1611 (1996).

    Google Scholar 

  • N.M. Litchinitser and D.B. Patterson, "Analysis of fiber Bragg gratings for dispersion compensation in reflective and transmissive geometries," IEEE J. Lightwave Technol. 15, 1323-1328 (1997).

    Article  ADS  Google Scholar 

  • N.M. Litchinitser, B.J. Eggleton, and D.B. Patterson, "Fiber Bragg gratings for dispersion compensation in transmission: Theoretical model and design criteria for nearly ideal pulse recompression," J. Lightwave Technol. 15, 1303-1313 (1997).

    Article  ADS  Google Scholar 

  • J. Skaar, "Synthesis of fiber Bragg gratings for use in transmission," J. Opt. Soc. Am. A 18, 557-564 (2001).

    ADS  Google Scholar 

  • C.K. Madsen and J.H. Zhao, \textit{Optical Filter Design and Analysis (New York: Wiley, 1999).

  • C.K. Madsen, G. Lenz, A.J. Bruce, M.A. Cappuzzo, L.T. Gomez, and R.E. Scotti, "Integrated all-pass filters for tunable dispersion and dispersion slope compensation," IEEE Photon. Technol. Lett. 11, 1623-1625 (1999).

    Article  ADS  Google Scholar 

  • C.K. Madsen, S. Chandrasekhar, E.J. Laskowski, M.A. Cappuzzo, J. Bailey, E. Chen, L.T. Gomez, A. Griffin, R. Long, M. Rasras, A. Wong-Foy, L.W. Stulz, J. Weld, and Y. Low, "An integrated tunable chromatic dispersion compensator for 40 Gbit/s NRZ and CSRZ," Optical Fiber Communications Conference and Exhibition, Anaheim, CA, postdeadline paper FD-9, 2002.

  • M. Jablonski, Y. Takushima, K. Kikuchi, Y. Tanaka, and N. Nigashi, "Adjustable coupled two-cavity allpass filter for dispersion slope compensation of optical fibres," Electron. Lett. 36, 511-512 (2000).

    Article  Google Scholar 

  • D.B. Patterson and B.C. Moore, US Patent US 6,356,684 B1 (2002).

  • D.J. Moss, S. McLaughlin, G. Randall, M. Lamont, M. Ardekani, P. Colbourne, S. Kiran, and C.A. Hulse, "Multichannel tunable dispersion compensation using all-pass multicavity etalons," Technical Digest of the Optical Fiber Communications Conference and Exhibit, Anaheim, CA, paper TuT2, 2002, pp. 132-133.

  • L.M. Lunardi, D.J. Moss, S. Chandrasekhar, L.L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C.A. Hulse, "Tunable Dispersion Compensation at 40-Gbit/s Using a Multicavity Etalon All-Pass Filter With NRZ, RZ, and CS-RZ Modulation," J. Lightwave Technol. 20, 2136-2144 (2002).

    Article  ADS  Google Scholar 

  • M. Bohn, W. Rosenkranz, and P.M. Krummrich, "Adaptive Distortion Compensation With Integrated Optical Finite Impulse Response Filters in High Bitrate Optical Communication Systems," IEEE J. Select. Topics Quantum Electron. 10, 273-280 (2004).

    Article  Google Scholar 

  • C.R. Doerr, S. Chandrasekhar, M. Cappuzzo, E. Chen, A. Wong-Foy, L. Gomez, S. Patel, and L. Buhl, "Two Mach-Zehnder, tunable dispersion compensators integrated in series to increase bandwidth and/or range while maintaining single knob control", IEEE Photon. Technol. Lett. 17, 828-830 (2005).

    Article  ADS  Google Scholar 

  • M. Shirasaki, "Chromatic-dispersion compensator using virtually imaged phased array," IEEE Photon. Technol. Lett. 9, 1598-1600 (1997).

    Article  ADS  Google Scholar 

  • F. Ouellette, "All-fiber filter for efficient dispersion compensation," Opt. Lett. 16, 303-305 (1991).

    Article  ADS  Google Scholar 

  • C.R. Doerr, L.W. Stulz, S. Chandrasekhar, and R. Pafchek, "Colorless Tunable Dispersion Compensator With 400-ps/nm Range Integrated With a Tunable Noise Filter," IEEE Photon. Technol. Lett. 15, 1258-1260 (2003).

    Article  ADS  Google Scholar 

  • C.R. Doerr, D.M. Marom, M.A. Cappuzzo, E.Y. Chen, A. Wong-Foy, L.T. Gomez, and S. Chandrasekhar, "40 Gbit/s colorless tunable compensator with 1000 ps/nm tuning range employing a planar lightwave circuit and a deformable mirror", Proceeings of the Optical Fiber Communications Conference, Anaheim, CA, postdeadline paper PDP5, 2005.

  • R.D. Gittlin, J.F. Hayes, and S.B. Weinstein, Data Communications Principles (New York: Plenum, 1992).

  • S. Benedetto, E. Biglieri, and V. Castellani, Digital Transmission Theory (Englewood Cliffs, NJ: Prentice-Hall, 1987).

  • J.G. Proakis, Digital Communications, 3rd ed. (New York: McGraw-Hill, 1995).

  • T. Nielsen and S. Chandrasekhar, "OFC 2004 workshop on optical and electronic mitigation of impairments", J. Lightwave Technol. 23, 131-142 (2005).

    Article  ADS  Google Scholar 

  • H.F. Haunstein, W. Sauer-Greff, A. Dittrich, K. Sticht, and R. Urbansky, "Principles for Electronic Equalization of Polarization-Mode Dispersion," IEEE J. Lightwave Technol. 22, 1169-1182 (2004).

    Article  ADS  Google Scholar 

  • S.L. Woodward, S.-Y. Huang, M.D. Feuer, and M. Boroditsky, "Demonstration of an Electronic Dispersion Compensator in a 100-km 10-Gbit/s Ring Network," IEEE Photon. Technol. Lett. 15, 867-869 (2003).

    Article  ADS  Google Scholar 

  • M.D. Feuer, S.-Y. Huang, S.L. Woodward, O. Coskun, and M. Boroditsky, "Electronic Dispersion Compensation for a 10-Gbit/s Link Using a Directly Modulated Laser," IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).

    Article  ADS  Google Scholar 

  • D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O'Sullivan, "5120 km RZ-DPSK transmission over G652 fiber at 10 Gbit/s with no optical dispersion compensation", Proc. of the Optical Fiber Communications Conference, Anaheim, CA, postdeadline paper PDP27, 2005.

  • H. Jiang, R. Saunders, S. Colaco, "SiGe IC for PMD mitigation and signal optimization of 40 Gbit/s transmission", Proc. Opt. Fiber Commun. 2005, Anaheim, CA, paper OWO2. \bibitem{Nakamura:2004 M. Nakamura, H. Nosaka, M. Ida, K. Kurishima, and M. Tokumitsu, "Electrical PMD equalizer Ics for a 40 Gbit/s transmission", Opt. Fiber Commun. Conf., Los Angeles, CA, paper TuG4, 2004.

  • M. Ibsen, M.K. Durkin, R. Feced, M.J. Cole, M.N. Zervas, and R.I. Laming, "Dispersion compensating fibre Bragg gratings", in Active and Passive Optical Components for WDM Communication, Proc. SPIE, 4532, 540-551 (2001).

    Article  Google Scholar 

  • K. Ennser, M. Ibsen, M. Durkin, M.N. Zervas, and R.I. Laming, IEEE Photon. Technol. Lett. 10, 1476-1478 (1998).

    Google Scholar 

  • C. Scheerer, C. Glingener, G. Fischer, M. Bohn, and W. Rosenkranz, "Influence of filter group delay ripples on system performance," in Proc. ECOC 1999, pp.1410-1411.

  • F. Ouellette, "The effect of profile noise on the spectral response of fiber gratings" in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Paper BMG13-2, Williamsburg, 1997.

  • R. Feced and M.N.Zervas, "Effect of random phase and amplitude errors in optical fiber gratings", J. Lightwave Technol. 18, 90-101 (2000).

    Article  ADS  Google Scholar 

  • R. Feced, J.A.J. Fells, S.E. Kanellopoulos, P.J. Bennett, and H.F.M. Priddle, "Impact of random phase errors on the performance of fiber grating dispersion compensators", Opt.l Fiber Commun. Conf. (OFC), 2001, Anheim, CA, Paper WDD89, 2001.

  • M. Sumetsky, B.J. Eggleton, and C.M. de Sterke, "Theory of group delay ripple generated by chirped fiber gratings", Opt. Express 10, 332-340 (2002).

    ADS  Google Scholar 

  • L. Poladian, "Graphical and WKB analysis of nonuniform Bragg gratings", Phys. Rev. E 48, 4758-4767 (1993).

    Article  ADS  Google Scholar 

  • N.G.R. Broderick and C.M. de Sterke, "Theory of grating superstructures", Phys.Rev. E 55, 3634-3646 (1997).

    Article  ADS  Google Scholar 

  • I. Riant, S. Gurib, J. Gourhant, P. Sansonetti, C. Bungarzeanu, and R. Kashyap, "Chirped fiber Bragg gratings for WDM chromatic dispersion compensation in multispan 10-Gbit/s transmission," IEEE J. Select.Topics Quant. Electron. 5, 1312-1324 (1999).

    Article  ADS  Google Scholar 

  • S.J. Mihailov, F. Bilodeau, K.O. Hill, D.C. Johnson, J. Albert, and A.S. Holmes, "Apodization technique for fiber grating fabrication with a halftone transmission amplitude mask," Appl. Opt. 39, 3670-3677 (2000).

    ADS  Google Scholar 

  • T. Komukai, T. Inui, and M. Nakazawa, "Very low group delay ripple characteristics of fibre Bragg grating with chirp induced by an S-curve bending technique," Electron. Lett. 37, 449-451 (2001).

    Article  Google Scholar 

  • A.V. Buryak and D.Yu. Stepanov, "Correction of systematic errors in the fabrication of fiber Bragg gratings," Opt. Lett. 27, 1099-1101 (2002).

    ADS  Google Scholar 

  • M. Sumetsky, P.I. Reyes, P.S. Westbrook, N.M. Litchinitser, and B.J. Eggleton, "Group delay ripple correction in chirped fiber Bragg gratings," Opt. Lett. 28, 777-779 (2003).

    ADS  Google Scholar 

  • J. Skaar and R. Feced, "Reconstruction of gratings from noisy reflection data," J. Opt. Soc. Am. A 19, 2229-2237 (2002).

    ADS  Google Scholar 

  • M. Sumetsky, Y. Dulashko, J. W. Fleming, A. Kortan, P.I. Reyes, and P.S. Westbrook, "Thermomechanical modification of diffraction gratings," Opt. Lett. 29, 1315-1317 (2004).

    Article  ADS  Google Scholar 

  • B. Mikkelsen, C. Rasmussen, P. Mamyshev, F. Liu, S. Dey, F. Rosca, "Real-world issues for High-capacity and long-haul transmission at 40 Gbit/s," ECOC 2003.

  • W.H. Hatton and M. Nishimure, "Temperature dependence of chromatic dispersion in single mode fibers," J. Lightwave Technol. 4, 1552-1555 (1986).

    Article  ADS  Google Scholar 

  • G.P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, 1997).

  • S. Lelievre, E. Pelletier, A.W. Farr, Y. Painchaud, R. Lachance, and M. Brown, "Grating based solutions for chromatic dispersion management in DWDM systems," NFOEC 2002.

  • A.H. Gnauck, J.M. Weisenfield, L.D. Garrett, R.M. Dersier, F. Forghieri, V. Gusmeroli, and D. Scarano, "4 ×40 Gbit/s 75 km WDM transmission over conventional fiber using a broad-band fiber grating," IEEE Photon. Technol. Lett. 11, 1503-1505 (1999).

    Article  ADS  Google Scholar 

  • R. DeSalvo, A.G. Wilson, J. Rollman, D.F. Schneider, L.M. Lunardi, S. Lumish, N. Agrawal, A.H. Steinbach, W.Baun, T. Wall, R. Ben-Michael, M.A. Itzler, A. Fejzuli, R.A. Chipman, G.T. Kiehne, and K.M. Kissa, "Advanced components and sub-system solutions for 40 Gbit/s transmission," J. Lightwave Technol. 20, 2154-2181 (2002).

    Article  ADS  Google Scholar 

  • S.G. Evangelides, Jr., N.S. Bergano, C.R. Davidson, "Intersymbol interference induced by delay ripple in fiber Bragg gratings," ECOC'99 Paper FA2, pp. 5-7.

  • R.L. Lachance, M. Morin, and Y. Painchaud, "Group delay ripple in fibre Bragg grating tunable dispersion compensators," Electron. Lett. 38, (2002).

  • H. Yoshimi, Y. Takushima, and K. Kikuchi, "A simple method for estimating the eye-opening penalty caused by group-delay ripple of optical filters," ECOC 2002, Paper 10.4.4.

  • N. Litchinitser, Y. Li, M. Sumetsky, P. Westbrook, B. Eggleton, "Tunable dispersion compensation devices: group delay ripple and system performance," OFC 2003, Paper TuD2, 163-164.

  • M.H. Eiselt, C.B. Clausen, R.W. Tkach, "Performance characterization of components with group delay fluctuations," IEEE Photon. Technol. Lett. 15, 1076-1078 (2003).

    Article  ADS  Google Scholar 

  • M. Derrien, D. Gauden, E. Goyat, A. Mugnier, P. Yvernault, and D. Pureur, "Wavelength-frequency analysis of dispersion compensator group delay ripples," OFC 2003, Paper MF31, pp. 34-35.

  • X. Fan, D. Labrake, and J. Brennan, "Chirped fiber grating characterization with phase ripples," OFC 2003, Paper FC2, pp. 638-640.

  • X. Liu, L.F. Mollenauer, X. Wei, "Impact of group-delay ripple on differential-phase-shift-keying transmission systems, ECOC 2003.

  • M. Sumetsky, N.M. Litchinitser, P.S. Westbrook, P.I. Reyes, B.J. Eggleton, Y. Li, R. Deshmukh, C. Soccolic, F. Rosca, J. Bennike, F. Liu, and S. Dey, "High performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple correction technique," Electron. Lett. 39, 1196-1198 (2003).

    Article  Google Scholar 

  • T.N. Nielsen, B.J.Eggleton, J.A. Rogers, P.S. Westbrook, P.B. Hansen, and T.A. Strasser, "Dynamic post dispersion optimization at 40 Gbit/s using a tunable fiber Bragg grating,'' IEEE Photon. Technol. Lett. 12, 173-175 (2000).

    Article  ADS  Google Scholar 

  • T. Inui, T. Komukai, M. Nakazawa, K. Suzuki, K.R. Tamura, K. Uchiyama, and T. Morioka, "Adaptive dispersion slope equalizer using a nonlinearly chirped fiber Bragg grating pair with a novel dispersion detection technique," IEEE Photon. Technol. Lett. 14, 549-551 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litchinitser, N., Sumetsky, M. & Westbrook, P. Fiber-based tunable dispersion compensation. J Optic Comm Rep 4, 41–85 (2007). https://doi.org/10.1007/s10297-006-0072-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10297-006-0072-6

Keywords

Navigation