Skip to main content

Advertisement

Log in

Evaluation of HY-2A satellite-borne water vapor radiometer with shipborne GPS and GLONASS observations over the Indian Ocean

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The Chinese Haiyang-2A (HY-2A) altimetry satellite is equipped with a calibration microwave radiometer (CMR) for correcting atmospheric water vapor path delay in radar altimeter observations. To evaluate the satellite-borne CMR, we retrieved 1 Hz high-frequency precipitable water vapor (PWV) using shipborne GPS and GLONASS from a two-month cruise in the Indian Ocean. This open-sea evaluation of the satellite-borne radiometer is free of the contamination of the satellite footprints induced by coastal lands, which occurs inevitably in ground-based or coastal stations. The estimates and errors of the retrieved PWV from shipborne GNSS kinematic precise point positioning were analyzed and then compared to the CMR-retrieved PWV. The results show that the shipborne GNSS kinematic precise point positioning can obtain marine PWV with an uncertainty of about 2.8 mm. When the HY-2A sub-satellite point and the ship cross, the HY-2A CMR-retrieved PWV is in good agreement with the GNSS PWV with the difference of about 0.8 mm, which demonstrates that the HY-2A satellite can contribute high-precision precipitable water vapor measurements to weather and atmospheric studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of the atmospheric water vapor using the Global Positioning System. J Geophys Res 97(D14):15787–15801

    Article  Google Scholar 

  • Boehm J, Niell A, Tregoning P, Schuh H (2006) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(7):L7304

    Article  Google Scholar 

  • Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81(10):679–683

    Article  Google Scholar 

  • Chadwell CD, Bock Y (2001) Direct estimation of absolute precipitable water in oceanic regions by GPS tracking of a coastal buoy. Geophys Res Lett 28(19):3701–3704

    Article  Google Scholar 

  • Dai L, Chen Y, Lie A, Zeitzew M, Zhang Y (2016) StarFire SF3: worldwide centimeter-accurate real time GNSS positioning. In: Proceedings of the ION GNSS 2016, Institute of Navigation, Portland, Oregon, USA, September 12–16, pp 3295–3320

  • Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Deeter MN (2007) A new satellite retrieval method for precipitable water vapor over land and ocean. Geophys Res Lett 34:L02815

    Article  Google Scholar 

  • Dodson AH, Chen W, Penna NT, Baker HC (2001) GPS estimation of atmospheric water vapour from a moving platform. J Atmos Sol Terr Phys 63(12):1331–1341

    Article  Google Scholar 

  • Elgered G, Davis JL, Herring TA, Shapiro II (1991) Geodesy by radio interferometry: water vapor radiometry for estimation of the wet delay. J Geophys Res 96(B4):6541–6555

    Article  Google Scholar 

  • Fang P, Bevis M, Bock Y, Gutman S, Wolfe D (1998) GPS meteorology: reducing systematic errors in geodetic estimates for zenith delay. Geophys Res Lett 25(19):3583–3586

    Article  Google Scholar 

  • Fujita M, Kimura F, Yoneyama K, Yoshizaki M (2008) Verification of precipitable water vapor estimated from shipborne GPS measurements. Geophys Res Lett 35(13):195–209

    Article  Google Scholar 

  • Ge M, Calais E, Haase J (2002) Sensitivity of zenith total delay accuracy to GPS orbit errors and implications for near-real-time GPS meteorology. J Geophys Res 107(D16):4315

    Article  Google Scholar 

  • Gendt G, Dick G, Reigber CH, Tomassini M, Liu Y, Ramatschi M (2003) Demonstration of NRT GPS water vapor monitoring for numerical weather prediction in Germany. J Meteorol Soc Jpn 82:360–370

    Google Scholar 

  • Geng J, Teferle F, Meng X, Dodson A (2010) Kinematic precise point positioning at remote marine platforms. GPS Solut 14(4):343–350

    Article  Google Scholar 

  • Haase JS, Ge M, Vedel H, Calais E (2003) Accuracy and variability of GPS tropospheric delay measurements of water vapor in the western Mediterranean. J Appl Meteorol 42(11):1547–1568

    Article  Google Scholar 

  • Haines B, Bar-Sever Y (1998) Monitoring the TOPEX microwave radiometer with GPS: stability of columnar water vapor measurements. Geophys Res Lett 25(9):3563–3566

    Article  Google Scholar 

  • Haines B, Desai S, Born G (2010) The Harvest experiment: calibration of the climate data record from TOPEX/Poseidon, Jason-1 and the ocean surface topography mission. Mar Geod 33(S1):91–113

    Article  Google Scholar 

  • Islam T, Brown ST (2017) Post-launch calibration of the Jason-3’s advanced microwave radiometer. In: 13th annual symposium on new generation operational environmental satellite systems, Washington State Convention Center, 26 January 2017

  • Jiang X, Lin M, Liu J, Zhang Y, Xie X, Peng H, Zhou W (2012) The HY-2 satellite and its preliminary assessment. Int J Digit Earth 5(3):266–281

    Article  Google Scholar 

  • Jin S, Park J, Cho J, Park P (2007) Seasonal variability of GPS-derived zenith tropospheric delay (1994–2006) and climate implications. J Geophys Res 112:D09110

    Article  Google Scholar 

  • Kealy J, Foster J, Businger S (2012) GPS meteorology: an investigation of ocean-based precipitable water estimates. J Geophys Res 117(17):D17303.1–D17303.11

    Google Scholar 

  • Kouba J, Héroux P (2001) Precise point positioning using IGS orbit and clock products. GPS Solut 5(2):12–28

    Article  Google Scholar 

  • Li X, Zus F, Lu C, Dick G, Ning T, Ge M, Wickert J, Schuh H (2015) Retrieving of atmospheric parameters from multi-GNSS in real time: validation with water vapor radiometer and numerical weather model. J Geophys Res 120(14):7189–7204

    Google Scholar 

  • Liu Y, Chen Y (2002) Improving accuracy of near real-time precipitable water vapor estimation with the IGS predicted orbits. Geophys Res Lett 29(16):49-1–49-3

    Article  Google Scholar 

  • Liu J, Ge M (2003) PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ J Nat Sci 8(2B):603–609

    Google Scholar 

  • Liu X, Goode M, Tegedor J, Vigen E, Oerpen O, Strandli R (2015) Real-time multi-constellation precise point positioning with integer ambiguity resolution. In: International association of institutes of navigation world congress, Prague, Czech Republic, 20–23 October 2015

  • Malys S, Jensen PA (1990) Geodetic point positioning with GPS carrier beat phase data from the CASA UNO experiment. Geophys Res Lett 17(5):651–654

    Article  Google Scholar 

  • Mertikas SP, Zhou X, Qiao F, Daskalakis A, Lin M, Peng H, Tziavos IN, Vergos G, Tripolitsiotis A, Frantzis X (2016) First preliminary results for the absolute calibration of the Chinese HY-2 altimetric mission using the CRS1 calibration facilities in West Crete, Greece. Adv Space Res 57(1):78–95

    Article  Google Scholar 

  • National Satellite Ocean Application Service (NSOAS) (2012) HY-2A satellite user manual, 2012 May

  • Ning T, Haas R, Elgered G, Willen U (2012) Multi-technique comparisons of 10 years of wet delay estimates on the west coast of Sweden. J Geod 86:565–575

    Article  Google Scholar 

  • Ning T, Wang J, Elgered G, Dick G, Wickert J, Bradke M, Sommer M, Querel R, Smale D (2016) The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations. Atmos Meas Tech 9(1):79–92

    Article  Google Scholar 

  • Rocken C, Ware RH, Van Hove T, Solheim F, Alber C, Johnson J, Bevis M, Businger S (1993) Sensing atmospheric water vapor with the Global Positioning System. Geophys Res Lett 20(23):2631–2634

    Article  Google Scholar 

  • Rocken C, Johnson J, Hove TV, Iwabuchi T (2005) Atmospheric water vapor and geoid measurements in the open ocean with GPS. Geophys Res Lett 32(12):L12813.1–L12813.3

    Article  Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Use Artif Satell Geod 15(6):247–251

    Google Scholar 

  • Shi C, Zhao Q, Geng J, Lou Y, Ge M, Liu, J (2008) Recent development of PANDA software in GNSS data processing. In: Proceedings of SPIE 7285, international conference on earth observation data processing and analysis (ICEODPA) (December 29, 2008), p 72851S

  • Sohn BJ, Smith EA (2003) Explaining sources of discrepancy in SSM/I water vapor algorithms. J Clim 16(20):3229–3255

    Article  Google Scholar 

  • Sun J (1993) Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error. J Geophys Res 98(C4):7069–7079

    Article  Google Scholar 

  • Vey S, Dietrich R, Fritsche M, Rülke A, Steigenberger P, Rothacher M (2009) On the homogeneity and interpretation of precipitable water time series derived from global GPS observations. J Geophys Res 114:D10101

    Article  Google Scholar 

  • Wang J, Zhang L, Dai A (2005) Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications. J Geophys Res 110:D21101

    Article  Google Scholar 

  • Wang J, Zhang L, Dai A, Van Hove T, Van Baelen J (2007) A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. J Geophys Res 112:D11107

    Article  Google Scholar 

  • Wang Z, Zhang D, Li Y, Zhao J (2014a) Prelaunch calibration and primary results from in-orbit calibration of the atmospheric correction microwave radiometer (ACMR) on the HY-2A satellite of China. Int J Remote Sens 35(11–12):4496–4514

    Article  Google Scholar 

  • Wang J, Zhang J, Fan C, Wang J (2014b) Validation of the “HY-2” altimeter wet tropospheric path delay correction based on radiosonde data. Acta Oceanol Sin 33(5):48–53

    Article  Google Scholar 

  • Wang X, Zhang K, Wu S, Fan S, Cheng Y (2016) Water vapor-weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend. J Geophys Res 121(2):833–852

    Google Scholar 

  • Webb SR, Penna NT, Clarke PJ, Webster S, Martin I, Bennitt GV (2015) Kinematic GNSS estimation of zenith wet delay over a range of altitudes. J Atmos Ocean Tech 33(1):3–15

    Article  Google Scholar 

  • Wentz FJ (1992) Measurement of oceanic wind vector using satellite microwave radiometers. IEEE Trans Geosci Remote Sens 30(5):960–972

    Article  Google Scholar 

  • Zhang D, Wang Z, Wang H, Zhao J, Li Y (2014) ACMR system description and performance. IEEE Geosci Remote Sens Symp 2014:5179–5182

    Google Scholar 

  • Zhang W, Lou Y, Haase JS, Zhang R, Zheng G, Huang J, Shi C, Liu J (2017) The use of ground-based GPS precipitable water measurements over China to assess radiosonde and ERA-Interim moisture trends and errors from 1999 to 2015. J Clim 30(19):7643–7667

    Article  Google Scholar 

  • Zhao J, Zhang D, Wang Z, Li Y (2016) The validation of HY-2A ACMR retrieval algorithms and product. IEEE Geosci Remote Sens Symp 2016:411–413

    Google Scholar 

  • Zheng G, Yang J, Ren L (2014a) Retrieval models of water vapor and wet tropospheric path delay for the HY-2A calibration microwave radiometer. J Atmos Ocean Tech 31(7):1516–1528

    Article  Google Scholar 

  • Zheng G, Yang J, Ren L, Zhou W, Huang L (2014b) The preliminary cross-calibration of the HY-2A calibration microwave radiometer with the Jason-1/2 microwave radiometers. Int J Remote Sens 35(11–12):4515–4531

    Article  Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the National Satellite Ocean Application Service for providing the HY-2A data and South China Sea Institute of Oceanology for the research vessel cruise. Dr. Liwen Dai and Dr. Xianglin Liu contributed the NavCom and Fugro PPP results, respectively. This study is supported by National Natural Science Foundation of China (Grant No. 41876106) and Basic Scientific Fund for National Public Research Institutes of China (2018Q04). Mr. Zhilu Wu is financially supported by China Scholarship Council (CSC. File No. 201706710115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilu Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, Y., Chen, G. et al. Evaluation of HY-2A satellite-borne water vapor radiometer with shipborne GPS and GLONASS observations over the Indian Ocean. GPS Solut 23, 87 (2019). https://doi.org/10.1007/s10291-019-0876-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-019-0876-5

Keywords

Navigation