Skip to main content
Log in

Estimating the orbit error of BeiDou GEO satellites to improve the performance of multi-GNSS PPP ambiguity resolution

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The Chinese BeiDou Navigation Satellite System (BDS) contains five geostationary earth orbit (GEO) satellites, which maintain almost stationary with respect to the earth. The accuracy of GEO orbit is very poor, which has negatively influenced multi-GNSS precise point positioning (PPP) integer ambiguity resolution (IAR). To overcome this problem, we estimate GEO orbit error corrections together with the narrow-lane fractional cycle bias (FCB), which is used to refine the orbit. We also estimate systematic bias in current GLONASS and BDS precise satellite clock products. Then, this solution is validated with combined GPS, GLONASS, and BDS PPP-IAR. A 7-day dataset of 45 stations was used in the experiment. It is demonstrated that, after considering GEO satellite orbit errors, the narrow-lane FCB estimates have comparable quality for each system. For kinematic PPP with an observation time of 6 min, only 14.7% of cases could be fixed by GPS alone, whereas the percentage decreased to 7.5% for GPS + GLONASS + BDS without considering GEO orbit errors. In contrast, if we consider that error, the percentage for GPS + GLONASS + BDS improved substantially to 96.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Beutler G, Moore AW, Mueller II (2009) The international global navigation satellite systems service (IGS): development and achievements. J Geod 83(3–4):297–307

    Article  Google Scholar 

  • Blewitt G (1989) Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. J Geophys Res 94(B8):10187–10203

    Article  Google Scholar 

  • Boehm J, Niell A, Tregoning P, Schuh H (2006) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07304. https://doi.org/10.1029/2005GL025546

    Article  Google Scholar 

  • Chuang S, Wenting Y, Weiwei S, Yidong L, Rui Z (2013) GLONASS pseudorange inter-channel biases and their effects on combined GPS/GLONASS precise point positioning. GPS Solut 17(4):439–451

    Article  Google Scholar 

  • Dong D, Bock Y (1989) Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4):3949–3966

    Article  Google Scholar 

  • Dow JM, Neilan RE, Gendt G (2005) The international GPS service: celebrating the 10th anniversary and looking to the next decade. Adv Space Res 36(3):320–326

    Article  Google Scholar 

  • Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198

    Article  Google Scholar 

  • Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier phase ambiguities in precise point positioning(PPP) with daily observations. J Geod 82(7):389–399

    Article  Google Scholar 

  • Ge M, Chen J, Douša J, Gendt G, Wickert J (2012a) A computationally efficient approach for estimating high-rate satellite clock corrections in realtime. GPS Solut 16(1):9–17

    Article  Google Scholar 

  • Ge M, Zhang H, Jia X, Song S, Wickert L (2012b) What is achievable with the current COMPASS Constellations? In: Proceedings of ION GNSS 2012, Institute of Navigation, Nashville, Tennessee, USA, 17–21 Sept, pp 331–339

  • Geng J, Shi C (2017) Rapid initialization of real-time PPP by resolving undifferenced GPS and GLONASS ambiguities simultaneously. J Geod 91(4):361–374

    Article  Google Scholar 

  • Geng J, Teferle FN, Shi C, Meng X, Dodson AH, Liu J (2009) Ambiguity resolution in precise point positioning with hourly data. GPS Solut 13(4):263–270

    Article  Google Scholar 

  • Geng J, Teferle FN, Meng X, Dodson AH (2011) Towards PPP-RTK: ambiguity resolution in real-time precise point positioning. Adv Space Res 47(10):1664–1673

    Article  Google Scholar 

  • Geng J, Zhao Q, Shi C, Liu J (2017) A review on the inter-frequency biases of GLONASS carrier-phase data. J Geod 91(3):329–340

    Article  Google Scholar 

  • Guo R, Hu X, Tang B, Huang Y, Liu L, Chen L, He F (2010a) Precise orbit determination for the geostationary satellite with multiple tracking technique. Chin Sci Bull 55(6):428–434

    Google Scholar 

  • Guo R, Hu X, Liu L, Wu X, Huang Y, He F (2010b) Orbit determination for geostationary satellites with the combination of transfer ranging and pseudorange data. Sci China Ser G Phys Mech Astron 53(9):1746–1754

    Article  Google Scholar 

  • Han S (1997) Quality-control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning. J Geod 71(6):351–361

    Article  Google Scholar 

  • Hatch R (1982) The synergism of GPS code and carrier measurements. In: Proceedings of the third international symposium on satellite Doppler positioning at Physical Sciences Laboratory of New Mexico State University, 8–12 Feb, vol 2, pp 1213–1231

  • Kouba J (2009) A guide to using international GNSS service (IGS) products. http://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf

  • Kozlov D, Tkachenko M, Tochilin A (2000) Statistical characterization of hardware biases in GPS + GLONASS receivers. In: Proceedings of ION GNSS 2000, Institute of Navigation, Salt Lake City, UT, 19–22 Sept, pp 817–826

  • Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation 56(2):135–149

    Article  Google Scholar 

  • Li Y, Gao Y, Shi J (2016) Improved PPP ambiguity resolution by COES FCB estimation. J Geod 90(5):437–450

    Article  Google Scholar 

  • Liu J, Ge M (2003) PANDA Software and its preliminary result of positioning and orbit determination. Wuhan Univ J Nat Sci 8(2B):603–609

    Google Scholar 

  • Liu Y, Ge M, Shi C, Lou Y, Wickert J, Schuh H (2016) Improving integer ambiguity resolution for GLONASS precise orbit determination. J Geod 90(8):715–726

    Article  Google Scholar 

  • Liu Y, Ye S, Song W, Lou Y, Chen D (2017a) Integrating GPS and BDS to shorten the initialization time for ambiguity-fixed PPP. GPS Solut 21(2):333–343

    Article  Google Scholar 

  • Liu Y, Ye S, Song W, Lou Y, Gu S, Li Q (2017b) Rapid PPP ambiguity resolution using GPS + GLONASS observations. J Geod 91(4):441–455

    Article  Google Scholar 

  • Liu Y, Lou Y, Ye S, Zhang R, Song W, Zhang X, Li Q (2017c) Assessment of PPP integer ambiguity resolution using GPS, GLONASS and BeiDou (IGSO, MEO) constellations. GPS Solut 21(4):1647–1659

    Article  Google Scholar 

  • Liu Y, Gu S, Li Q (2018) Calibration of GLONASS inter-frequency code bias for ppp ambiguity resolution with heterogeneous rover receivers. Remote Sens 10(3):399

    Article  Google Scholar 

  • Lou Y, Liu Y, Shi C, Yao X, Zheng F (2014) Precise orbit determination of BeiDou constellation based on bets and MGEX network. Sci Rep 4(8):4692

    Google Scholar 

  • Lou Y, Liu Y, Shi C, Wang B, Yao X, Zheng F (2016) Precise orbit determination of BeiDou constellation: method comparison. GPS Solut 20(2):259–268

    Article  Google Scholar 

  • Lou Y, Gong X, Gu S, Zheng F, Feng Y (2017) Assessment of code bias variations of bds triple-frequency signals and their impacts on ambiguity resolution for long baselines. GPS Solut 21(1):177–186

    Article  Google Scholar 

  • Melbourne WG (1985) The case for ranging in GPS-based geodetic systems. In: Proceedings of the first international symposium on precise positioning with the global positioning system, Rockville, MD, USA, 15–19 April, pp 373–386

  • Montenbruck O, Rizos C, Weber R, Weber G, Neilan R, Hugentobler U (2013) Getting a grip on multi-GNSS: the international GNSS service MGEX campaign. GPS World 24(7):44–49

    Google Scholar 

  • Montenbruck O, Steigenberger P, Prange L, Deng Z, Zhao Q, Perosanz F (2017) The multi-GNSS experiment (MGEX) of the international GNSS service (IGS)—achievements, prospects and challenges. Adv Space Res 59(7):1671–1697

    Article  Google Scholar 

  • Parkinson BW, Spilker JJ (1996) Global positioning system: theory and applications, progress in astronautics and aerodynamics. American Institute of Astronautics, Washington, DC, pp 163–164

    Google Scholar 

  • Petit G, Luzum B, Al E (2010) IERS conventions. IERS Tech Note 36:1–95

    Google Scholar 

  • Qing Y, Lou Y, Dai X (2017) Orbit determination of BDS GEO and IGSO satellites using combined GNSS and SLR observations. J Geod Geodyn 37(5):467–471

    Google Scholar 

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798

    Article  Google Scholar 

  • Shi C, Zhao Q, Li M, Tang W, Hu Z, Lou Y, Zhang H, Niu X, Liu J (2012) Precise orbit determination of BeiDou Satellites with precise positioning. Sci China Earth Sci 55(7):1079–1086

    Article  Google Scholar 

  • Sleewaegen J, Simsky A, Wilde W, Boon F, Willems T (2012) Demystifying GLONASS inter-frequency carrier phase biases. Inside GNSS 7:57–61

    Google Scholar 

  • Song W, Yi W, Lou Y, Shi C, Yao Y, Liu Y, Mao Y, Xiang Y (2014) Impact of GLONASS pseudorange inter-channel biases on satellite clock corrections. GPS Solut 18(3):323–333

    Article  Google Scholar 

  • Steigenberger P, Hugentobler U, Hauschild A, Montenbruck O (2013a) Orbit and clock analysis of compass GEO and IGSO satellites. J Geod 87(6):515–525

    Article  Google Scholar 

  • Steigenberger P, Montenbruck O, Weber R, Hugentobler U (2013b) Status and perspective of the IGS Multi-GNSS Experiment (MGEX). In: EGU general assembly conference abstracts, vol 15, p 2558

  • Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1–2):65–82

    Article  Google Scholar 

  • Thaller D, Dach R, Seitz M, Beutler G, Mareyen M, Richter B (2011) Combination of GNSS and SLR observations using satellite co-locations. J Geod 85(5):257–272

    Article  Google Scholar 

  • Tian Y, Ge M, Neitzel F (2015) Particle filter-based estimation of inter-frequency phase bias for real-time GLONASS integer ambiguity resolution. J Geod 89(11):1145–1158

    Article  Google Scholar 

  • Urschl C, Beutler G, Gurtner W, Hugentobler U, Schaer S (2007) Contribution of SLR tracking data to GNSS orbit determination. Adv Space Res 39(10):1515–1523

    Article  Google Scholar 

  • Wanninger L (2012) Carrier phase inter-frequency biases of GLONASS receivers. J Geod 86(2):139–148

    Article  Google Scholar 

  • Wanninger L, Beer S (2015) BeiDou satellite-induced code pseudorange variations: diagnosis and therapy. GPS Solut 19(4):639–648

    Article  Google Scholar 

  • Wu JT, Wu SC, Hajj GA, Bertiger WI, Lichten SM (1993) Effects of antenna orientation on GPS carrier phase. Manuscr Geod 18(2):91–98

    Google Scholar 

  • Wübbena G (1985) Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In: Proceedings of the first international symposium on precise positioning with the global positioning system, Rockville, MD, 15–19 April, pp 403–412

  • Yamada H, Takasu T, Kubo N, Yasuda A (2010) Evaluation and calibration of receiver inter-channel biases for RTK-GPS/GLONASS. In: Proceedings of ION GNSS 2010, 21–24 Sept., Institute of Navigation, Portland, Oregon, pp 1580–1587

  • Ye S, Liu Y, Song W, Lou Y, Yi W, Zhang R, Jiang P, Xiang Y (2016) A cycle slip fixing method with GPS + GLONASS observations in real-time kinematic PPP. GPS Solut 20(1):101–110

    Article  Google Scholar 

  • Yi W, Song W, Lou Y, Shi C, Yao Y (2016) A method of undifferenced ambiguity resolution for GPS + GLONASS precise point positioning. Sci Rep 6:26334

    Article  Google Scholar 

  • Zhang R, Yao Y, Hu Y, Song W (2017) A two-step ionospheric modeling algorithm considering the impact of GLONASS pseudo-range inter-channel biases. J Geod 91:1435–1446

    Article  Google Scholar 

  • Zhao Q, Guo J, Li M, Qu L, Hu Z, Shi C, Liu J (2013) Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J Geod 87(5):475–486

    Article  Google Scholar 

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key Research and Development Program of China (no. 2017YFB0503401), National Natural Science Foundation of China (no. 41704033), Shenzhen Future Industry Development Funding Program (no. 201607281039561400), Shenzhen Scientific Research and Development Funding Program (no. JCYJ20170818092931604), and Research Program of Shenzhen S&T Innovation Committee (no. JCYJ20170412105839839).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirong Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ye, S., Song, W. et al. Estimating the orbit error of BeiDou GEO satellites to improve the performance of multi-GNSS PPP ambiguity resolution. GPS Solut 22, 84 (2018). https://doi.org/10.1007/s10291-018-0751-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-018-0751-9

Keywords

Navigation