Skip to main content

Advertisement

Log in

Familial dysautonomia

  • Review Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Familial dysautonomia (FD) is an autosomal recessive hereditary sensory and autonomic neuropathy (HSAN, type 3) expressed at birth with profound sensory loss and early death. The FD founder mutation in the ELP1 gene arose within the Ashkenazi Jews in the sixteenth century and is present in 1:30 Jews of European ancestry. The mutation yield a tissue-specific skipping of exon 20 and a loss of function of the elongator-1 protein (ELP1), which is essential for the development and survival of neurons. Patients with FD produce variable amounts of ELP1 in different tissues, with the brain producing mostly mutant transcripts. Patients have excessive blood pressure variability due to the failure of the IXth and Xth cranial nerves to carry baroreceptor signals. Neurogenic dysphagia causes frequent aspiration leading to chronic pulmonary disease. Characteristic hyperadrenergic “autonomic crises” consisting of brisk episodes of severe hypertension, tachycardia, skin blotching, retching, and vomiting occur in all patients. Progressive features of the disease include retinal nerve fiber loss and blindness, and proprioceptive ataxia with severe gait impairment. Chemoreflex failure may explain the high frequency of sudden death in sleep. Although 99.5% of patients are homozygous for the founder mutation, phenotypic severity varies, suggesting that modifier genes impact expression. Medical management is currently symptomatic and preventive. Disease-modifying therapies are close to clinical testing. Endpoints to measure efficacy have been developed, and the ELP1 levels are a good surrogate endpoint for target engagement. Early intervention may be critical for treatment to be successful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Riley CM, Day RL et al (1949) Central autonomic dysfunction with defective lacrimation; report of five cases. Pediatrics 3(4):468–478

    CAS  PubMed  Google Scholar 

  2. Litchfield HR, Wagner HH (1956) Familial autonomic dysfunction Riley-Day syndrome. Arch Pediatr (N Y) 73(1):1–5

    CAS  PubMed  Google Scholar 

  3. Rotthier A, Baets J, Timmerman V, Janssens K (2012) Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat Rev Neurol 8(2):73–85

    CAS  PubMed  Google Scholar 

  4. Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H (2017) Familial dysautonomia: history, genotype, phenotype and translational research. Prog Neurobiol 152:131–148

    PubMed  Google Scholar 

  5. Schwartzlow C, Kazamel M (2019) Hereditary sensory and autonomic neuropathies: adding more to the classification. Curr Neurol Neurosci Rep 19(8):52

    PubMed  Google Scholar 

  6. Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J, Cuajungco MP et al (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68(3):598–605

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Salani M, Urbina F, Brenner A, Morini E, Shetty R, Gallagher CS et al (2019) Development of a screening platform to identify small molecules that modify ELP1 Pre-mRNA splicing in familial dysautonomia. SLAS Discov 24(1):57–67

    CAS  PubMed  Google Scholar 

  8. Blumenfeld A, Slaugenhaupt SA, Liebert CB, Temper V, Maayan C, Gill S et al (1999) Precise genetic mapping and haplotype analysis of the familial dysautonomia gene on human chromosome 9q31. Am J Hum Genet 64(4):1110–1118

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Waldman S, Backenroth D, Harney E, Flohr S, Neff NC, Buckley GM et al (2022) Genome-wide data from medieval German Jews show that the Ashkenazi founder event pre-dated the 14(th) century. Cell. 185(25):4703–16.e16

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Leyne M, Mull J, Gill SP, Cuajungco MP, Oddoux C, Blumenfeld A et al (2003) Identification of the first non-Jewish mutation in familial dysautonomia. Am J Med Genet A 118A(4):305–308

    PubMed  Google Scholar 

  11. Gutierrez JV, Kaufmann H, Palma JA, Mendoza-Santiesteban C, Macefield VG, Norcliffe-Kaufmann L (2018) Founder mutation in IKBKAP gene causes vestibular impairment in familial dysautonomia. Clin Neurophysiol 129(2):390–396

    PubMed  Google Scholar 

  12. Morini E, Chekuri A, Logan EM, Bolduc JM, Kirchner EG, Salani M et al (2023) Development of an oral treatment that rescues gait ataxia and retinal degeneration in a phenotypic mouse model of familial dysautonomia. Am J Hum Genet 110(3):531–547

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kojic M, Abbassi NEH, Lin TY, Jones A, Wakeling EL, Clement E et al (2023) A novel ELP1 mutation impairs the function of the elongator complex and causes a severe neurodevelopmental phenotype. J Hum Genet. https://doi.org/10.1038/s10038-023-01135-3

    Article  PubMed  PubMed Central  Google Scholar 

  14. Boone N, Bergon A, Loriod B, Deveze A, Nguyen C, Axelrod FB et al (2012) Genome-wide analysis of familial dysautonomia and kinetin target genes with patient olfactory ecto-mesenchymal stem cells. Hum Mutat 33(3):530–540

    CAS  PubMed  Google Scholar 

  15. Norcliffe-Kaufmann L, Palma JA, Martinez J, Kaufmann H (2020) Carbidopa for afferent baroreflex failure in familial dysautonomia: a double-blind randomized crossover clinical trial. Hypertension 76(3):724–731

    CAS  PubMed  Google Scholar 

  16. Norcliffe-Kaufmann L, Martinez J, Axelrod F, Kaufmann H (2013) Hyperdopaminergic crises in familial dysautonomia: a randomized trial of carbidopa. Neurology 80(17):1611–1617

    PubMed  PubMed Central  Google Scholar 

  17. Kaufmann H, Norcliffe-Kaufmann L, Palma JA (2020) Baroreflex dysfunction. N Engl J Med 382(2):163–178

    CAS  PubMed  Google Scholar 

  18. Norcliffe-Kaufmann L (2019) The vagus and glossopharyngeal nerves in two autonomic disorders. J Clin Neurophysiol 36(6):443–451

    PubMed  Google Scholar 

  19. Norcliffe-Kaufmann L, Millar Vernetti P, Palma JA, Balgobin BJ, Kaufmann H (2020) Afferent baroreflex dysfunction: decreased or excessive signaling results in distinct phenotypes. Semin Neurol 40(5):540–549

    PubMed  Google Scholar 

  20. Fuente Mora C, Norcliffe-Kaufmann L, Palma JA, Kaufmann H (2015) Chewing-induced hypertension in afferent baroreflex failure: a sympathetic response? Exp Physiol 100(11):1269–1279

    PubMed  Google Scholar 

  21. Norcliffe-Kaufmann L, Axelrod F, Kaufmann H (2010) Afferent baroreflex failure in familial dysautonomia. Neurology 75(21):1904–1911

    PubMed  PubMed Central  Google Scholar 

  22. Norcliffe-Kaufmann L, Palma JA, Kaufmann H (2016) Mother-induced hypertension in familial dysautonomia. Clin Auton Res 26(1):79–81

    PubMed  Google Scholar 

  23. Couzin-Frankel J (2010) Chasing a disease to the vanishing point. Science 328(5976):298–300

    CAS  PubMed  Google Scholar 

  24. Norcliffe-Kaufmann L, Axelrod FB, Kaufmann H (2013) Developmental abnormalities, blood pressure variability and renal disease in Riley Day syndrome. J Hum Hypertens 27(1):51–55

    CAS  PubMed  Google Scholar 

  25. Reshef R, Aderka D, Suprun H, Manelis G, Manelis J (1977) Myocardial infarction association with the Riley-Day syndrome. Am Heart J 94(4):486–490

    CAS  PubMed  Google Scholar 

  26. Norcliffe-Kaufmann LJ, Axelrod FB, Kaufmann H (2013) Cyclic vomiting associated with excessive dopamine in Riley-day syndrome. J Clin Gastroenterol 47(2):136–138

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ziegler MG, Lake CR, Kopin IJ (1976) Deficient sympathetic nervous response in familial dysautonomia. N Engl J Med 294(12):630–633

    CAS  PubMed  Google Scholar 

  28. Pearson J, Pytel B (1978) Quantitative studies of ciliary and sphenopalatine ganglia in familial dysautonomia. J Neurol Sci 39(1):123–130

    CAS  PubMed  Google Scholar 

  29. Goldstein DS, Eldadah B, Sharabi Y, Axelrod FB (2008) Cardiac sympathetic hypo-innervation in familial dysautonomia. Clin Auton Res 18(3):115–119

    PubMed  PubMed Central  Google Scholar 

  30. Dietrich P, Dragatsis I (2016) Familial dysautonomia: mechanisms and models. Genet Mol Biol 39(4):497–514

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu HF, Yu W, Saito-Diaz K, Huang CW, Carey J, Lefcort F et al (2022) Norepinephrine transporter defects lead to sympathetic hyperactivity in familial dysautonomia models. Nat Commun 13(1):7032

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Palma JA, Norcliffe-Kaufmann L, Fuente-Mora C, Percival L, Mendoza-Santiesteban C, Kaufmann H (2014) Current treatments in familial dysautonomia. Expert Opin Pharmacother 15(18):2653–2671

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fuente Mora C, Palma JA, Kaufmann H, Norcliffe-Kaufmann L (2017) Cerebral autoregulation and symptoms of orthostatic hypotension in familial dysautonomia. J Cereb Blood Flow Metab 37(7):2414–2422

    PubMed  Google Scholar 

  34. Norcliffe-Kaufmann L, Galindo-Mendez B, Garcia-Guarniz AL, Villarreal-Vitorica E, Novak V (2018) Transcranial doppler in autonomic testing: standards and clinical applications. Clin Auton Res 28(2):187–202

    PubMed  Google Scholar 

  35. Palma JA, Norcliffe-Kaufmann L, Perez MA, Spalink CL, Kaufmann H (2017) Sudden unexpected death during sleep in familial dysautonomia: a case-control study. Sleep. 40(8):zsx083

    PubMed  PubMed Central  Google Scholar 

  36. Palma JA, Gileles-Hillel A, Norcliffe-Kaufmann L, Kaufmann H (2019) Chemoreflex failure and sleep-disordered breathing in familial dysautonomia: implications for sudden death during sleep. Auton Neurosci 218:10–15

    PubMed  Google Scholar 

  37. Pinsky L (1977) Ventilatory disturbance in Riley-Day syndrome. N Engl J Med 296(9):516

    CAS  PubMed  Google Scholar 

  38. Kazachkov M, Palma JA, Norcliffe-Kaufmann L, Bar-Aluma BE, Spalink CL, Barnes EP et al (2018) Respiratory care in familial dysautonomia: Systematic review and expert consensus recommendations. Respir Med 141:37–46

    PubMed  PubMed Central  Google Scholar 

  39. Smith LJ, Norcliffe-Kaufmann L, Palma JA, Kaufmann H, Macefield VG (2018) Impaired sensorimotor control of the hand in congenital absence of functional muscle spindles. J Neurophysiol 120(6):2788–2795

    PubMed  PubMed Central  Google Scholar 

  40. Macefield VG, Norcliffe-Kaufmann L, Goulding N, Palma JA, Fuente Mora C, Kaufmann H (2016) Increasing cutaneous afferent feedback improves proprioceptive accuracy at the knee in patients with sensory ataxia. J Neurophysiol 115(2):711–716

    PubMed  Google Scholar 

  41. Cressey A, Jacobs DS, Remington C, Carrasquillo KG (2018) Improvement of chronic corneal opacity in ocular surface disease with prosthetic replacement of the ocular surface ecosystem (PROSE) treatment. Am J Ophthalmol Case Rep 10:108–113

    PubMed  PubMed Central  Google Scholar 

  42. Marthol H, Tutaj M, Brys M, Brown CM, Hecht MJ, Berlin D et al (2003) Clonidine improves postprandial baroreflex control in familial dysautonomia. Eur J Clin Invest 33(10):912–918

    CAS  PubMed  Google Scholar 

  43. Dillon RC, Palma JA, Spalink CL, Altshuler D, Norcliffe-Kaufmann L, Fridman D et al (2017) Dexmedetomidine for refractory adrenergic crisis in familial dysautonomia. Clin Auton Res 27(1):7–15

    PubMed  Google Scholar 

  44. Spalink CL, Barnes E, Palma JA, Norcliffe-Kaufmann L, Kaufmann H (2017) Intranasal dexmedetomidine for adrenergic crisis in familial dysautonomia. Clin Auton Res 27(4):279–282

    PubMed  PubMed Central  Google Scholar 

  45. Axelrod FB, Berlin D (2009) Pregabalin: a new approach to treatment of the dysautonomic crisis. Pediatrics 124(2):743–746

    PubMed  Google Scholar 

  46. Daniel SJ, Cardona I (2014) Onabotulinum toxin A for the treatment of sialorrhea in familial dysautonomia. Int J Pediatr Otorhinolaryngol 78(5):879–881

    PubMed  Google Scholar 

  47. Morini E, Gao D, Montgomery CM, Salani M, Mazzasette C, Krussig TA et al (2019) ELP1 splicing correction reverses proprioceptive sensory loss in familial dysautonomia. Am J Hum Genet 104(4):638–650

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ajiro M, Awaya T, Kim YJ, Iida K, Denawa M, Tanaka N et al (2021) Therapeutic manipulation of IKBKAP mis-splicing with a small molecule to cure familial dysautonomia. Nat Commun 12(1):4507

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sinha R, Kim YJ, Nomakuchi T, Sahashi K, Hua Y, Rigo F et al (2018) Antisense oligonucleotides correct the familial dysautonomia splicing defect in IKBKAP transgenic mice. Nucleic Acids Res 46(10):4833–4844

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Romano G, Riccardi F, Bussani E, Vodret S, Licastro D, Ragone I et al (2022) Rescue of a familial dysautonomia mouse model by AAV9-Exon-specific U1 snRNA. Am J Hum Genet 109(8):1534–1548

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra González-Duarte.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Duarte, A., Cotrina-Vidal, M., Kaufmann, H. et al. Familial dysautonomia. Clin Auton Res 33, 269–280 (2023). https://doi.org/10.1007/s10286-023-00941-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-023-00941-1

Keywords

Navigation