Skip to main content
Log in

An Intuitionistic Fuzzy C-Means and Local Information-Based DCT Filtering for Fast Brain MRI Segmentation

  • Original Paper
  • Published:
Journal of Imaging Informatics in Medicine Aims and scope Submit manuscript

Abstract

Structural and photometric anomalies in the brain magnetic resonance images (MRIs) affect the segmentation performance. Moreover, a sudden change in intensity between two boundaries of the brain tissues makes it prone to data uncertainty, resulting in the misclassification of the pixels lying near the cluster boundaries. The discrete cosine transform (DCT) domain-based filtering is an effective way to deal with structural and photometric anomalies, while the intuitionistic fuzzy C-means (IFCM) clustering can handle the uncertainty using the intuitionistic fuzzy set (IFS) theory. In this background, we propose two novel approaches, namely, the DCT-based intuitionistic fuzzy C-means (DCT-IFCM) and the DCT-based local information IFCM (DCT-LIFCM), which effectively deal with the Rician and Gaussian noises and also handle the data uncertainty problem to provide high segmentation accuracy. The DCT-IFCM approach performs the histogram-based segmentation, while the DCT-LIFCM uses the pixel-wise computation to include the spatial information. Although the DCT-LIFCM delivers slightly better performance than the DCT-IFCM, the latter is very fast in providing equally high segmentation accuracy. An exhaustive performance analysis is provided to demonstrate the superior performance of the proposed algorithms compared with the state-of-the-art algorithms, including those based on the DCT-based filtering approach and the IFS theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.C. Bezdek , L.O. Hall, L. P. Clarke, Review of MR image segmentation techniques using pattern recognition. Med Phys 20(4),1033–1048, 1993. https://doi.org/10.1118/1.597000

    Article  CAS  PubMed  Google Scholar 

  2. R. Solanki, D. Kumar, Probabilistic intuitionistic fuzzy C-means algorithm with spatial constraint for human brain MRI segmentation, Multimedia Tools Applications, 2023. https://doi.org/10.1007/s11042-023-14512-z

    Article  Google Scholar 

  3. Y.A. Tolias, S.M. Panas, Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 28(3), 359–369, 1998. https://doi.org/10.1109/3468.668967

    Article  Google Scholar 

  4. S.N. Sulaiman, S.M.C Ishak, I.S Isa, N. Hamzah, Denoising of noisy MRI brain image by using switching-based clustering algorithm, IEEE International Conference on Control System, Computing and Engineering, 1–6, 2014. https://doi.org/10.1109/ICCSCE.2014.7072679

  5. I.S. Isa, S.N. Sulaiman, M. Mustapha, S. Darus, Evaluating de-noising performances of fundamental filters for T2- weighted MRI images, Procedia Computer Science 60, 760 – 768, 2015. https://doi.org/10.1016/j.procs.2015.08.231

    Article  Google Scholar 

  6. R.D. Nowak, Wavelet-based Rician noise removal for magnetic resonance imaging, IEEE Trans. on Image Processing 8(10), 1408–1419, 1997. https://doi.org/10.1109/83.791966

    Article  Google Scholar 

  7. M.N. Ahmed, S.N. Yamany, N. Mohamed, A.A. Farag, T. Moriarty, A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Transactions on Medical Imaging, 21(3), 193–199, 2002. https://doi.org/10.1109/42.996338

    Article  PubMed  Google Scholar 

  8. L. Szilagyi, Z. Benyo, S. Szilagyi, H.S. Adam, MR brain image segmentation using an enhanced fuzzy C-means algorithm, In Proceedings of the 25th Annual International Conference of the IEEE, 7–21, 2003. https://doi.org/10.1109/IEMBS.2003.1279866

  9. S.C. Chen, D.Q. Zhang, Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 34, 1907–1916, 2004. https://doi.org/10.1109/TSMCB.2004.831165

    Article  Google Scholar 

  10. W. Cai, S. Chen, D. Zhang, Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation, Pattern Recognition, 40, 825–838, 2007. https://doi.org/10.1016/j.patcog.2006.07.011

    Article  Google Scholar 

  11. S. Krinidis, V. Chatzis, A robust fuzzy local information C-means clustering algorithm, IEEE Transaction on Image Processing, 19, 1328–1337, 2010. https://doi.org/10.1109/TIP.2010.2040763

    Article  Google Scholar 

  12. A. Buades, B. Coll, J.M. Morel, A non-local algorithm for image denoising, Computer Vision and Pattern Recognition 2, 60-65, 2005. https://doi.org/10.1109/CVPR.2005.38

    Article  Google Scholar 

  13. J. Wang, J. Kong, Y. Lu, M. Qi, B. Zhang, A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints, Computerized Medical Imaging and Graphics, 32(8), 685-698, 2008. https://doi.org/10.1016/j.compmedimag.2008.08.004

    Article  PubMed  Google Scholar 

  14. F. Zhao, L. Jiao, H. Liu, Fuzzy C-means clustering with non-local spatial information for noisy image segmentation, Frontiers Computer Science China 5(1), 45–56, 2011. https://doi.org/10.1007/s11704-010-0393-8

    Article  Google Scholar 

  15. F. Zhao, Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation, Neurocomputing 106, 115–125, 2013. https://doi.org/10.1016/j.neucom.2012.10.022

    Article  Google Scholar 

  16. X. Zhang, Y. Sun, G. Wang, Q. Guo, C. Zhang, B. Chen, Improved fuzzy clustering algorithm with non-local information for image segmentation, Multimedia Tools Applications 76, 7869–7895, 2017. https://doi.org/10.1007/s11042-016-3399-x

    Article  Google Scholar 

  17. J. Hu, Y. Pu, Y. Zhang, Y. Liu, J. Zhou, A Novel Nonlocal Means Denoising Method Using the DCT, in: Proceeding of International Conference on Image Processing, Computer Vision and Pattern Recognition, 2011, IPCV’11 Las Vegas, USA.

  18. J. Hu, Y. Pu, X. Wu, Y. Zhang, J. Zhou, Improved DCT-based nonlocal means filter for MR images denoising, Computational and Mathematical Methods in Medicine 2012, 1–14. https://doi.org/10.1155/2012/232685

  19. K. Singh, S. K. Ranade, C. Singh, Comparative performance analysis of various wavelet and nonlocal means based approaches for image denoising, International Journal for Light and Electron Optics (Optik), 131, 1–15, 2017. https://doi.org/10.1016/j.ijleo.2016.11.055

    Article  Google Scholar 

  20. C. Singh, A. Bala. A transform-based fast fuzzy C-means approach for high brain MRI segmentation accuracy, Applied Soft Computing journal, 760 0–17, 2019. https://doi.org/10.1016/j.asoc.2018.12.005

  21. R. C. Gonzalez, R. E. Woods, Digital Image Processing, 4th Edition, 2018, Pearson India Education Services Pvt. Ltd., Noida, India.

  22. N. Pelekis, D. Iakovidis, E. E. Kotsifakos, I. Kopanakis, Fuzzy clustering of intuitionistic fuzzy data, International Journal of Business Intelligence and Data Mining 3(1), 45-65, 2008. https://doi.org/10.1504/IJBIDM.2008.017975

    Article  Google Scholar 

  23. Z. Xu Z, J. Wu, Intuitionistic fuzzy C-means clustering algorithms, Journal of Systems engineering and Electronic, 21(4):580–590, 2010. https://doi.org/10.3969/j.issn.1004-4132.2010.04.009

  24. H. Verma, R.K. Agrawal, A. Sharan. An improved intuitionistic fuzzy C-means clustering algorithm incorporating local information for brain image segmentation, Applied Soft Computing, 46, 543-557, 2016. https://doi.org/10.1016/j.asoc.2015.12.022

    Article  Google Scholar 

  25. D. Kumar, R.K. Agrawal, H. Verma, Kernel intuitionistic fuzzy entropy clustering for MRI image segmentation, Soft Computing 24(6), 4003–4026, 2020. https://doi.org/10.1007/s00500-019-04169-y

    Article  Google Scholar 

  26. H. Verma, A. Gupta, D. Kumar, A modified intuitionistic fuzzy C-means algorithm incorporating hesitation degree, Pattern Recognition Letters, 122, 45-52, 2019. https://doi.org/10.1016/j.patrec.2019.02.017

    Article  Google Scholar 

  27. S. Zeng, Z. Wang, R. Haung, L. Chen, D. Feng, A study on multi-kernel intuitionistic fuzzy C-means clustering with multiple attributes, Neurocomputing 358, 59-71, 2019. https://doi.org/10.1016/j.neucom.2019.01.042

    Article  Google Scholar 

  28. P. Kumar, R.K. Agrawal, D. Kumar, Fast and robust spatial fuzzy bounded k-plane clustering method for human brain MRI image segmentation, Applied Soft Computing, 133 109939, 1-5 2023. https://doi.org/10.1016/j.asoc.2022.109939.

    Article  Google Scholar 

  29. A. Tahmasbi, F. Saki, S. B. Shokouhi, Classification of benign and malignant masses based on Zernike moments, Computers in Biology and Medicine, 41(8), 2011, 726–735, 2011. https://doi.org/10.1016/j.compbiomed.2011.06.009

  30. A. Miri, S. Sharifian, S. Rashidi, M. Ghods, Medical image denoising based on 2D discrete cosine transform via ant colony optimization, Optik, 156, 938-948, 2018. https://doi.org/10.1016/j.ijleo.2017.12.074.

    Article  Google Scholar 

  31. N. Pierazzo, J.M. Morel, and G. Facciolo, Multi-Scale DCT Denoising, Image Processing On Line, 7, 288–308, 2017. https://doi.org/10.5201/ipol.2017.201

  32. C. Singh, A. Bala, A DCT-based local and non-local fuzzy C-means algorithm for segmentation of brain magnetic resonance images, Applied Soft Computing, 68, 447-457, 2018. https://doi.org/10.1016/j.asoc.2018.03.054

    Article  Google Scholar 

  33. K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1), 87-96, 1986. https://doi.org/10.1016/S0165-0114(86)80034-3

    Article  Google Scholar 

  34. L. P. Yaroslavsky, K. Egiazarian, and J. Astola, Transform domain image restoration methods: review, comparison, and interpretation, Proc. SPIE 4304, Nonlinear Image Processing and Pattern Analysis XII, (8 May 2001); https://doi.org/10.1117/12.424970

  35. J. V Manjón, P. Coupé, A. Buades, D.L. Collins, M. Robles, New methods for MRI denoising based on sparseness and self-similarity, Medical Image Analysis, 16(1):18-27, 2012. https://doi.org/10.1016/j.media.2011.04.003

    Article  PubMed  Google Scholar 

  36. O. G. Guleryuz, Weighted Averaging for Denoising with over complete dictionaries, IEEE Transactions on Image Processing, 16(12), 2007, 3020 – 3034. https://doi.org/10.1109/TIP.2007.908078

    Article  PubMed  Google Scholar 

  37. M. Gong, Y. Liang, J. Shi, W. Ma, J. Ma, Fuzzy C-Means Clustering With Local Information and Kernel Metric for Image Segmentation, IEEE Transactions on Image Processing, 22(2), 573 – 584, 2013. https://doi.org/10.1109/TIP.2012.2219547

    Article  PubMed  Google Scholar 

  38. K.P Lin, A Novel Evolutionary Kernel Intuitionistic Fuzzy C -means Clustering Algorithm, IEEE Transactions on Fuzzy Systems, 22(5), 1074 – 1087, 2014. https://doi.org/10.1109/TFUZZ.2013.2280141

    Article  Google Scholar 

  39. M. Sugeno, Fuzzy measures and fuzzy integrals—a survey, in: Readings in Fuzzy Sets for Intelligent Systems, 251–257, 1993. https://doi.org/10.1016/B978-1-4832-1450-4.50027-4

  40. R.R. Yager, On the measure of fuzziness and negation part I: membership in the unit interval, International Journal of General Systems 5(4), 221–229, 1979. https://doi.org/10.1080/03081077908547452

    Article  Google Scholar 

  41. R.R. Yager, On the measure of fuzziness and negation. II. Lattices, Information and Control, 44(3), 236–260, 1980. https://doi.org/10.1016/S0019-9958(80)90156-4

  42. T. Chaira, A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images, Applied. Soft Computing, 11, 1711-1717, 2011. https://doi.org/10.1016/j.asoc.2010.05.005

    Article  Google Scholar 

  43. Online simulated Brainweb, http://www.bic.mni.mcgill.ca/brainweb/, 2016. [Online].

  44. Internet Brain Segmentation Repository (IBSR), http://www.cma.mgh. harvard.edu/ibsr, 2015. [Online].

  45. A.J. Worth, The internet brain segmentation repository (IBSR), 2016, 2009–01–15.

  46. N. J. Tustison, J. C. Gee, Introducing Dice, Jaccard, and Other Label Overlap Measures To ITK, Insight J, 1–4, 2009. https://doi.org/10.54294/1vixgg

  47. W. Wang, Y. Zhang, On fuzzy cluster validity indices, Fuzzy Sets and Systems, 158(19), 2095-2117, 2007. https://doi.org/10.1016/j.fss.2007.03.004

    Article  Google Scholar 

  48. C. Singh, S. Kaur, K. Singh. Invariant moments and transform-based unbiased nonlocal means for denoising of MR images, Biomedical Signal Processing and Control, 30, 13-24, 2016. https://doi.org/10.1016/j.bspc.2016.05.007

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. All authors read and approved the final manuscript. Conceptualization, Methodology, Software, Formal analysis, Writing-review & editing, and Supervision are performed by Chandan Singh. Sukhjeet Kaur performs conceptualization, Visualization, Validation, Writing-review & editing. Conceptualization, Software, Validation, Formal analysis, Data collection, and Writing the first original draft are performed by Dalvinder Kaur. Anu Bala performs conceptualization, Visualization, Validation, Writing-review & editing.

Corresponding author

Correspondence to Anu Bala.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

The research does not involve any human or animal participant, their data, or biological material. No ethical approval is required. The datasets analyzed during the current study are BrainWeb and IBSR, which are publically available at https://www.bic.mni.mcgill.ca/brainweb/ and http://www.cma.mgh.Harvard.edu/ibsr , respectively.

Consent to Participate

The research does not involve any human individual participant. Consent to participate is not required.

Consent to Publish

The manuscript does not contain any person's data in any form. Consent to publish is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 7 A summary of various categories for fuzzy C-means clustering, methods pertaining to a category, acronym, year of publication, and reference in the paper

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, C., Ranade, S.K., Kaur, D. et al. An Intuitionistic Fuzzy C-Means and Local Information-Based DCT Filtering for Fast Brain MRI Segmentation. J Digit Imaging. Inform. med. (2024). https://doi.org/10.1007/s10278-023-00899-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10278-023-00899-6

Keywords

Navigation